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Abstract

This paper investigates the performance of different dimension re-
duction approaches for large vector autoregressions in multi-step ahead
forecasts. We consider factor augmented VAR models using principal
components and partial least squares, random subset regression, ran-
dom projection, random compression, and estimation via LASSO and
BVAR. We compare the accuracy of iterated and direct multi-step
point and density forecasts. The comparison is based on macroeco-
nomic and financial variables from the FRED-MD data base. Our
findings suggest that random subspace methods and LASSO estima-
tion deliver the most precise forecasts.
Keywords Multi-step forecasting, VAR, dimension reduction, density
forecasting.

1 Introduction

This paper investigates the ability of different dimension reduction tech-
niques for large vector autoregressions to deliver accurate multi-step point
and density forecasts. The background to this study is the increasing num-
ber of methods that have been proposed for dimension reduction for vector
autoregressive (VAR) models. We provide a comprehensive review of their
forecast accuracy.

An early use of dimension reduction in a large VAR is the paper by
Bernanke et al. (2005) who use factors estimated via principal components
methods in a VAR model together with the variable of interest. They call
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this the factor augmented VAR (FAVAR). Factor extraction by principal
components implies that the factors reflect the information in the regressor
set but not their importance for the dependent variable. Partial least squares
(PLS), in contrast, extract factors that target the dependent variable, and
the results of Groen and Kapetanios (2016) suggest that PLS may deliver
better forecasts in the absence of a strong factor structure.

An alternative to factor models is compressing the variables of the large
data set via random compression introduced by Donoho (2006), which was
extended to a Bayesian setting by Guhaniyogi and Dunson (2015). Random
draws of compression matrices are used to reduce the dimension of the data
set. It can be shown that the information that is of importance for forecasts
is retained with only limited loss. This approach has been used by Koop
et al. (2019) in a Bayesian VAR. In place of the non-standard distribution
of the random compression weights, Boot and Nibbering (2019) propose
the use of standard normally distributed weights in the random matrix for
dimension reduction and call this the random projection approach.

Boot and Nibbering (2019) also investigate complete and random subset
regression proposed by Elliott et al. (2013). Complete subset regression
constructs forecasts from large data sets by averaging the forecasts from
all possible combinations of small dimensional models that can be selected
from the large data set. The downside of complete subset regression is
that the number of small dimensional models can be prohibitively large.
Random subset regression draws a number of these small dimensional models
at random and averages the forecasts. Boot and Nibbering (2019) show
theoretically that the loss from using only a number of models decreases
quickly in the number of randomly drawn models. Our work sheds light on
the ability of these different random subspace methods to produce accurate
forecasts.

The LASSO estimator of Tibshirani (1996) combines the estimation and
dimension reduction step by using a penalized estimation where the L1 norm
of the parameter vector is constrained. This causes small parameters to be
set to zero, which is equivalent to eliminating the corresponding variables
and leads to automatic dimension reduction.

Bayesian estimation for VAR models has been extended to large VARs
by Mol et al. (2008) and Bańbura et al. (2010). They show that using ap-
propriate priors, Bayesian methods can deliver similar forecast performance
compared to factor models. The choice of priors for Bayesian VAR (BVAR)
models has been investigated by Giannone et al. (2015). Based on this work,
Koop et al. (2019) evaluate the forecast performance of Bayesian VAR using
random compression and time varying parameters on seven variables using
iterated forecasts. Their results suggest that BVARs provide more accurate
forecasts than factor models.

While the literature has considered the forecasting ability of subsets of
these approaches at different horizons, the multi-step nature of the forecasts
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has typically not been investigated. This contrasts with the literature on
univariate AR and small VAR models, which has dealt with this topic ex-
tensively. Multi-step forecasts can be constructed in an iterative or a direct
manner and Marcellino et al. (2006) and Pesaran et al. (2011) evaluate the
forecasting performance of the two approaches empirically. They find that,
while on average the iterated approach tends to be preferred, no approach
dominates for all variable categories. In this paper, we revisit this issue for
the case of large VAR models. It is generally thought that direct forecasts
are more precise than iterated forecasts when the model is misspecified.
However, the results of Pesaran et al. (2011) suggest that the misspecifi-
cation has to be very large for this to be the case. Given that dimension
reduction potentially introduces an additional level of model misspecifica-
tion, it is important to assess in how far this changes the trade-off between
the two multi-step forecasting methods.

McCracken and McGillicuddy (2019) compare direct and iterated fore-
casts for conditional forecasts in VAR models, that is, the forecasts of, say,
inflation conditional on an assumed future path of monetary policy. They
find that conditional forecasts generally have similar properties to uncon-
ditional forecasts. However, McCracken and McGillicuddy (2019) also find
that, when restricting the sample to the Great Moderation, the direct ap-
proach yields more precise forecasts.

A source of possible model misspecification is structural instability, which
has been suggested as a source of forecast failure by, among others, Stock
and Watson (1996), Pesaran et al. (2006), Koop and Potter (2007), Giaco-
mini and Rossi (2009) and Inoue and Rossi (2011). We evaluate in how far
allowing for structural breaks influences the predictive ability of dimension
reduction techniques for multi-step forecasting. We use the robust optimal
weighting scheme introduced by Pesaran et al. (2013) to account for struc-
tural breaks. Our findings suggest that accounting for structural breaks
does not change the relative performance of the different methods.

Much of the literature on VAR forecasting has focused on point fore-
casts. Over the recent years, however, a large literature has developed that
considers the properties of density forecasts. See Tay and Wallis (2000) and
Corradi and Swanson (2006) for surveys. These developments were partially
driven by the adoption of density forecasts as a communication tool for mon-
etary policy, such as the Bank of England’s fan charts. We will therefore
consider the density forecasting accuracy of the dimension reduction meth-
ods in addition to their point forecast accuracy.

This paper is structured as follows. In the next section, we introduce the
dimension reduction methods, robust optimal weights for structural breaks,
and the construction of density forecasts. Section 3 discusses the empiri-
cal setup of our investigation, including a description of the data set, and
Section 4 contains the results. The conclusion in Section 5 summarizes the
findings.
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2 Forecasting approaches

Consider the VAR model

Φ(L)zt = µ+ εt

where zt is a K × 1 vector of endogenous variables, µ is a K × 1 intercept
vector, and εt is a K × 1 vector of disturbances. A complication for estima-
tion and forecasting is that the number of parameters in the polynomial lag
matrices, Φ(L), increases non-linearly in K to a point where the number of
observations in standard data sets do not allow efficient estimation. As a
result, a number of approaches have been developed to mitigate the estima-
tion problem by reducing the dimension of the data set while retaining most
of its information. For a review of the statistical literature on dimension
reduction see Ma and Zhu (2013).

Assume that the purpose is to forecast one variable, yt, using its own
lags and the lags of the Kx dimensional vector xt, such that zt = (yt,x

′
t)
′.

The idea is then to forecast yt using a lower dimensional vector x̃t = Rxt
that retains most of the information in xt, where R is an M ×Kx matrix
with M < Kx,. The different methods discussed in this paper differ in the
matrix R that is used to reduce the dimensionality of xt. The first two
methods, the factor augmented VAR and partial least squares, use dimen-
sion reduction matrices that are determined by the properties of the data.
The three methods described thereafter use random dimension reduction
matrices. Next, we discuss the LASSO, which uses a penalized estimation
procedure for the parameter vector, which can however be reinterpreted as
zero-restrictions on R. Finally, we discuss Bayesian estimation where priors
address the estimation problem of the large dimensional data set.

The factor models and the random subspace methods allow for dimension
reduction at different stages. First, common factors can be extracted from
the variables, xt, before they enter the VAR. We refer to this as dimension
reduction in the variable space. Second, the extraction of the factors can
be done from the regressor matrix of each equation in the VAR, that is,
variables enter with their lags into the dimension reduction. We refer to
this as dimension reduction in the variable-lag space. Both procedures have
been used in the literature. For example, Bernanke et al. (2005) extract
factors using the principal components of the variable space and Boot and
Nibbering (2019) employ random subset regression and random projection
in the variable-lag space. A priori it is not clear which method is superior.
Extracting factors, for example, in the variable space will retain the temporal
lag structure in the VAR. However, the dimension reduction methods may
be more efficient in extracting the relevant temporal structure from the
larger regressor matrix. In the empirical application below, we will use both
approaches and compare their relative forecast accuracy.
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2.1 Dimension reduction techniques

2.1.1 Factor augmented VAR

The factor augmented VAR (FAVAR) model of Bernanke et al. (2005) re-
places the full vector xt by a set of factors f t. The factors are extracted
using principal components as suggested by Stock and Watson (2002). The
included factors correspond to the largest eigenvalues of the covariance ma-
trix of xt and summarize the variation of the data in the direction of the
main axes of the space spanned by the covariance matrix of xt.

The resulting factor augmented VAR model is

Φ(f)(L)z
(f)
t = µ+ νt (1)

where z
(f)
t = (yt,f

′
t)
′ and Φ(f)(L) is the corresponding polynomial lag ma-

trix. The dimension reduction matrix, R(f), is a function of the eigenvectors
associated with the largest eigenvalues of the covariance matrix of xt.

The number of factors to include in the FAVAR model is a crucial in-
gredient. This choice can be made based on economic considerations or
statistical measures, such as information criteria or cross-validation. In our
empirical application, we will use cross-validation to determine the number
of factors.

2.1.2 Partial least squares

A potential weakness of the FAVAR approach is that the factors summarize
the main variation of xt without regard to the importance of the factors
for yt. If yt is largely determined by a factor that is less important for
the variables in xt it will likely be omitted from the FAVAR. PLS, in con-
trast, selects the factors that are most highly correlated with the dependent
variable.

Similar to the factors in the FAVAR approach above, the factors in the
PLS approach are weighted averages of the variables in xt. However, while
in the FAVAR approach the weights are the eigenvectors associated with
the largest eigenvalues of the covariance matrix of xt, PLS uses the cor-
relations with the dependent variable as the weights. The most common
representation of PLS is the following algorithm by Helland (1990).

Initialize by setting vt = yt − 1
T

∑T
t=1 yt and qit = xit − 1

T

∑T
t=1 xt, i =

1, 2, . . . ,Kx. Then iterate of the following steps M times, where M is the
number of factors used in the forecast.

(i) Calculate wj = (wj1, wj2, . . . , wjKx), wji = v′qi/(T − 1), and con-
struct factor j as f j = Xwj , where v = (v1, v2, . . . , vT )′, qi =
(qi1, qi2, . . . , qiT )′, and X = (x′1,x

′
2, . . . ,x

′
T )′.
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(ii) Calculate the residuals from regressing v and qi on factor f j , ṽ =(
I − f j(f ′jf j)−1f ′j

)
v and q̃i =

(
I − f j(f ′jf j)−1f ′j

)
qi. Set v = ṽ

and qi = q̃i, for i = 1, 2, . . .Kx.

By calculating the residuals in each step the orthogonality of the factors is
ensured. The factors are then used in a VAR such as (1). Again, the number
of factors is required, which we determine via cross-validation.

2.1.3 Random compression

Random compression uses a compression matrix, R
(r)
(c), to reduce the di-

mension of xt, where r = 1, 2, . . . , R are different draws of the compression

matrix. Forecasts resulting using x̃
(r)
t = R

(r)
(c)xt are averaged over the R

draws with equal weights to yield the random compression forecast.

Each element ρ
(r)
ij of R

(r)
(c) is drawn from the following distribution

Pr

(
ρ
(r)
ij =

1√
ϕ(r)

)
= ϕ(r)2

Pr
(
ρ
(r)
ij = 0

)
= 2(1− ϕ(r))ϕ(r)

Pr

(
ρ
(r)
ij = − 1√

ϕ(r)

)
= (1− ϕ(r))2

where i = 1, 2, . . . ,M
(r)
(c) and j = 1, 2, . . . ,Kx, ϕ(r) is drawn from a uni-

form distribution, U(0.02, 0.98) (Achlioptas 2003; Guhaniyogi and Dunson
2015). The columns of Rr

(c) are then orhonormalized using Gram-Schmidt
orhonormalization to achieve unit lengths in the rows. Guhaniyogi and
Dunson (2015) show in a Bayesian settings that predictions using the above
distribution converge to the true predictive density. The row dimension,
M(c) can be drawn from a uniform distribution. However, we obtained bet-
ter results by using cross-validation to determine M(c), which also makes the
three random methods comparable.

2.1.4 Random projection

A similar approach to random compression has been introduced by Boot and

Nibbering (2019). They suggest to draw the elements, ρ
(r)
ij , of R

(r)
(p) from a

standard normal distribution

ρ
(r)
ij ∼ N(0, 1)

where the dimension of R
(r)
(p), M(p) is now a choice parameter, which we

select via cross-validation in the application.
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Random compression and random projection both use random weights to
achieve dimension reduction. However, while random compression excludes
some variables in each draw, random projection uses weighted averages of
all variables in each draw. Both methods require standardization of the
regressors.

2.1.5 Random subset regression

Random subset regression randomly draws M(s) predictors from the data

set. Each draw uses a M(s) × Kx selection matrix, R
(r)
(s). Random subset

regression is a randomized version of complete subset regression proposed
by Elliott et al. (2013). Complete subset regression uses every possible com-
bination of M(s) regressors from the set of Kx regressors to create forecasts
and the forecasts are then averaged with equal weights. With large Kx this
approach may be computationally infeasible. Boot and Nibbering (2019)
show that drawing R subsets approximates the forecast from complete sub-
set regression even for moderately large R.

2.1.6 LASSO

The LASSO of Tibshirani (1996) minimizes the squared residuals subject to
a penalization of the sum of the absolute values of the coefficients

min
θ

(
1

T

T∑
t=1

(yt − β0 − β′1zt−1 − · · · − β′pzt−p)2 + κ |θ|

)

where θ = (β′0,β
′
1, . . . ,β

′
p)
′ and | · | denotes the L1 norm. The use of

the L1 penalization implies that small coefficients are set to zero, which is
equivalent to zero restrictions in the dimension reduction matrix R. The
penalization constant κ needs to be set by the researcher and we choose it
via cross-validation.

2.1.7 BVAR

The use of priors to facilitate the estimation of large VAR models has been
discussed by Mol et al. (2008) and Bańbura et al. (2010). Their results sug-
gest that the Minnesota prior of Doan et al. (1984) and Litterman (1986)
produces accurate forecasts. The original specification of the Minnesota
prior assumes that the variables are independent random walks. The first
order autoregressive coefficient is therefore a priori one and all other coeffi-
cients a priori zero. An alternative specification sets the first order autore-
gressive coefficient to zero, which implies that the variable is a priori white
noise.
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Formally, the prior is defined as

E[Φ(1)ij ] =

{
δi, j = i

0, otherwise
and Var[Φ(1)ij ] =


λ2

k2
, j = i

ϑ
λ2σ2

i

k2σ2
j
, otherwise

where Φ(1)ij is the ij-element of the first lag coefficient matrix. The BVAR
requires a number of parameters to be set a priori: the choice between
random walk and white noise, that is δi = 1 or 0, the amount of shrinkage
of the remaining coefficient is determined by λ, which ranges between 0 and
∞, and the importance of variable across equations given by ϑ ∈ (0, 1). We
set ϑ = 1 a priori as do, for example, Bańbura et al. (2010). We determine
the prior parameters, δi and λ via cross-validation. The estimation of the
BVAR with Minnesota prior can be achieved via OLS in combination with
dummy observations, which makes it computationally efficient.

Our iterated forecasts from the BVAR are constructed by, first, estimat-
ing the parameter and, second, plugging them into the forecasting equation.
In a Bayesian setting, this is a pseudo-iterated forecast that approximates
the mean of the posterior predictive density, which would take the distribu-
tion of the parameters into account. Bańbura et al. (2010) find, however,
that the forecasting performance of the pseudo-iterated forecast is essen-
tially the same as evaluating the posterior predictive density. As this is also
the approach to construct the remaining, frequentist forecast, it allows us
to compare the forecasts on an equal basis.

Several other classes of priors exist for BVAR models, such as the Dirichlet-
Laplace prior, the horseshoe prior, the normal-gamma prior, and the stochas-
tic search variable selection prior. Cross et al. (2020) show that none of these
priors beats the Minnesota prior when forecasting macroeconomic data. For
this reason, we restrict our attention to the Minnesota prior.

2.2 Iterated and direct forecasts

When forecasting multiple periods ahead with a VAR, direct and iterated
versions of the forecast can be obtained. The two options have been dis-
cussed by a large literature summarized by Marcellino et al. (2006) and
Pesaran et al. (2011). Iterated forecasts will use a given VAR model for
all horizons and iterate the model to obtain forecasts beyond the one-step
ahead forecast. Direct forecasts, in contrast, use a different model for each
horizon. As iterated forecasts use the one-step ahead model, they use the
largest amount of data whereas direct forecasts typically require a larger
pre-sample for larger forecast horizons. Given a correctly specified model,
the iterated forecast is therefore more efficient in finite samples. However,
it is thought that direct forecasts may be more robust to misspecification
because iterated forecasts use powers of the autoregressive matrices, which
could exacerbate potential biases. Empirically Marcellino et al. (2006) and
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Pesaran et al. (2011) find that iterated forecast deliver more precise forecast
for a majority of time series. Given that the dimension reduction tech-
niques potentially introduce a source of misspecification as they only deliver
approximations to the true DGP, it will be interesting to see whether this
improves direct forecasts relative to their iterated counterparts.

2.3 Time varying parameter forecasts

Stock and Watson (1996) investigate the prevalence of structural breaks
among macroeconomic and financial time series and find that a substantial
number of series have one or more structural breaks. While the modeling of
structural breaks is not the focus of this paper, we need to ensure that our
results are not driven by structural breaks. We therefore construct forecasts
that use robust optimal weighting of observations developed by Pesaran
et al. (2013) to ensures that forecasts are robust against possible structural
breaks.

The idea of robust optimal weighting is as follows. For a linear regression
model with a break in the parameter vector, one can determine an optimal
weighting scheme for the observations such that the mean square forecast
error is minimized in expectations. However, the weights will depend on
the time and size of the break, which in practice are unknown. One can
estimate the time and size of the break using, for example, the test of Boot
and Pick (2020). However, the parameter uncertainty that is introduced by
using estimated break parameters in the weights leads to a deterioration of
forecast accuracy.

An alternative to putting point estimates of the time and size of the
break into the weights, is to integrate the weights with respect to a uniformly
distributed break time. This leads to the following weights, which do not
depend on any of these parameters,

w∗t =
− log(1− t/T )

T − 1
, for t = 1, 2, . . . , T − 1 (2)

w∗T =
log(T )

T − 1
(3)

and wt =
w∗t∑T
s=1 w

∗
s

. An observation at time t is then multiplied by the weight

wt and the parameter estimates of the forecast equation are obtained as nor-
mally, for example, using least squares or maximum likelihood estimators.

The weights in (2) and (3) give the highest weight to the most recent
observation and reduce the weight smoothly for observations further in the
past. The intuition is that the further an observation is in the past, the
more likely it is that a break in the parameters has occurred after this
period. Therefore less weight should be placed on observations further in
the past compared to more recent ones, which are less likely to be before a
break point.

9



The weights bear resemblance to exponential smoothing weights in the
tradition of Holt (1957). However, in contrast to exponential smoothing, the
robust optimal weights do not require the choice of a nuisance parameter, the
down-weighting coefficient. In our application, we also experimented with
exponential smoothing. While the results are qualitatively similar, they are
sensitive to the choice of down-weighting coefficient. We therefore restrict
attention to the results using robust optimal weights.

2.4 Density forecasting

So far, the discussion implicitly focused on point forecasts. An alternative,
however, is to consider density forecasts. Density forecasts require a decision
on the implied distribution. A popular distribution for density forecasts is
the two-piece normal distribution, which is, for example, the basis for the
Bank of England fan charts (Elliott and Timmermann 2016). The two-piece
normal density uses the formulation of the normal distribution but with
different variances on either side of the mean.

The density is given as

p(yT+h|ŷT+h|T , σh,1, σh,1) =


exp[−(yT+h−ŷT+h|T )2/2σ2

h,1]√
2π(σh,1+σh,2)/2

for yT+1 ≤ ŷT+h|T
exp[−(yT+h−ŷT+h|T )2/2σ2

h,2]√
2π(σh,1+σh,2)/2

for yT+1 > ŷT+h|T

The two-piece normal requires the additional estimation of the two vari-
ances, σ2h,1 and σ2h,2, which are estimated as

σ̂2h,1 = ω

 ∑
yt+h:yt+h<ŷt+h|t

(yt − ŷt+h|t)2
2/3

σ̂2h,2 = ω

 ∑
yt+h:yt+h≥ŷt+h|t

(yt − ŷt+h|t)2
2/3

where

ω =

 ∑
yt+h:yt+h<ŷt+h|t

(yt − ŷt+h|t)2
1/3

+

 ∑
yt+h:yt+h≥ŷt+h|t

(yt − ŷt+h|t)2
1/3

see John (1982). Note that the variances are estimated for each variable and
forecasting method separately but for simplicity of notation we do not add
further subscripts. We start the estimation of the variances with a sample
of forecasts that starts two years before the forecast evaluation period and,
for subsequent forecasts we add the additional variances in the expanding
estimation sample.
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The two-piece normal distribution nests the normal distribution. So if
the two variances were, in fact, identical it would be more efficient to use the
normal distribution. We can, ex post, evaluate the equality of the variances
using a sign test. The equality of the variances is rejected for all the variables
and all forecasting methods at the 5% level. A concern could be that the
estimates of the variances are autocorrelated, and we repeat the sign test for
skip sampled variances, sampling a variance every twelve months. The sign
tests still reject the null of equal variances in 84% of forecasting methods and
variables. Allowing for different variances and using the two-piece normal
therefore appears the prudent choice.

An alternative to the two-piece normal would be to derive the distri-
bution from the forecasting model, which requires making distributional
assumption at that stage. Given the results from the sign tests, we feel the
more conservative approach is justified.

Finally, for the evaluation of density forecasts we need to consider the
choice of loss function. Here, we use log score of the density forecasts,
log p(yT+h|ŷT+h|T , σ2h,1, σ2h,2), which is the most popular scoring rule in eco-
nomic forecasting according to Elliott and Timmermann (2016). However, a
range of alternative loss functions is available that weight forecast errors in
different parts of the distribution differently; see the discussions by Gneiting
and Raftery (2007) and by Elliott and Timmermann (2016).

3 Forecasting exercise

We apply the different forecasting methods to data from the FRED-MD data
base of McCracken and Ng (2016). We use the vintage from September 2017
and transform the data as suggested by McCracken and Ng (2016). The
data set contains 126 variables with monthly observations from January
1959 to August 2017. We focus on forecasting 14 variables: (1) industrial
production, (2) unemployment rate, (3) non-farm employees, (4) federal
funds rate, (5) ten-year treasury bond yield, (6) PPI, (7) CPI, (8) RPI,
(9) housing starts, (10) real personal consumption expenditure, (11) real
M2, (12) trade weighted dollar exchange rate, (13) S&P 500, (14) VXO. In
order to forecast these variables, we use all of the 126 series as regressors.
The period up to June 1986 spans the first estimation window and we use
expanding estimation windows for subsequent forecasts. This yields 363
forecasts for each forecasting method and forecast horizon.

Each forecasting method requires a number of tuning parameters, which
we determine by cross-validation: FAVAR and PLS require the number of
factors, random subset regression, random projection, and random compres-
sion require the number of variables selected in each draw or generated in
the projection or compression, LASSO requires the shrinkage coefficient κ,
and the BVAR requires the parameters δ and λ. We use the cross-validation
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sample from July 1981 to June 1986, generate pseudo-out-of-sample fore-
casts for a range of settings of the tuning parameters and select the tuning
parameter for each method that minimizes the MSFE for each h-step ahead
forecast separately. In the baseline results, we use tuning parameters by
pooling the MSFE of all series relative to that of the prevailing mean fore-
cast. This has the advantage that a few odd forecasts cannot dominate the
choice of tuning parameters for a given series. Only for the BVAR do we
use series specific tuning parameters as the choice of random walk versus
white noise cannot be averaged across series. We also check in how far the
results differ when using separate tuning parameters for each series for the
other methods. To anticipate the results: the differences are minor.

For all methods we include 13 lags and leave it to the dimension reduc-
tion methods to make the best use of this information. The first lag of the
dependent variable is always included separately in the factor and random
subspace methods. For the random subspace methods we use 1000 itera-
tions, which was also used by Boot and Nibbering (2019). We conducted
several trial forecasts with more iterations but changes of the forecasts are
minimal after 1000 iterations.

We add two benchmark models to the forecasting exercise. The first is
the prevailing mean model

ŷPMT+h|T =
1

T

T∑
t=1

yt

The second is a univariate autoregressive model of order 13, where the lag
order is the same as the large VAR methods.

All point forecasts are evaluated using the MSFE

MSFEij =
1

T − T0 − h+ 1

T∑
t=T0+h

(
yt+h,j − ŷ

(i)
t+h,j

)2
where i denotes the forecasting method: prevailing mean, AR, FAVAR,
PLS, random subset, random projection, random compression, LASSO, and
BVAR, T0 is the last observation in the estimation sample, and j denotes
the different series considered. We report the MSFE relative to that of the
prevailing mean model, which results in the relative MSFE

RelMSFEij = MSFEij/MSFEPM,j

Tables 1 and 2 report the average of the relative MSFEs across series,
1
N

∑N
j=1 RelMSFEij .

Density forecasts are evaluated using the log score, log p(yT+h|ŷT+h, σ̂1h, σ2h).
Similar to the MSFE above, we report the log score for each method as a
ratio of the average log score of the benchmark, prevailing mean model. Ta-
bles 5 and 6 again report the average of the relative log scores across series.
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For both evaluation criteria, we calculate the test statistic of equal predic-
tive accuracy of Diebold and Mariano (1995) and report the number of series
where, for a given pair of methods, the null of equal predictive accuracy was
rejected.

4 Results

4.1 Point forecasts

4.1.1 Average forecast accuracy

Table 1 reports the average relative MSFE of the different forecasting meth-
ods with the results for the equally weighted, iterated multi-step ahead
forecasts in the top panel and results for equally weighted direct forecasts
in the second panel. The most accurate one-step ahead forecast, given in
the first line, is from the the random subset regression in the variable space
with an average relative MSFE of 0.711. Random subset regression in the
variable-lag space, random projection in the variable space, and LASSO pro-
duce similarly accurate forecasts. FAVAR and PLS produce noticeably less
precise forecasts.

The most accurate multi-step ahead forecasts are random subset regres-
sion (h = 3) and random projection where the best h = 6 forecast is a direct
forecast but the best h = 12 forecast an iterated forecast. LASSO, BVAR,
and univariate AR yield forecasts that are close in precision. The forecasts
of the FAVAR and PLS are again considerably less precise.

The comparison of iterated against direct forecasts is quite balanced. AR
and LASSO are more precise when using the iterated approach and BVAR
is similar for both approaches. For the factor models and random subspace
models an interesting pattern emerges: methods that reduce dimension in
the variable-lag space favor direct forecasts, methods that reduce dimension
in the variable space favor the iterated approach.

Compared to the univariate AR, only random projection—iterated when
reducing dimension of the variable space and direct when reducing dimension
of the variable-lag space—produces more precise forecasts over all horizons.
Random subset selection and LASSO produce more precise forecasts for
three out of four forecast horizons.

When considering factor models, FAVAR and PLS are near identical
when extracting factors in the variable space and the iterated approach is
more accurate. The most precise forecasts among the factor approaches are,
however, produced by the direct FAVAR with factors from the variable-lag
space, and this is the only set of factor forecasts that are comparable to the
random subset forecast in precision.

The third and fourth panel show the results when using robust optimal
weights such that forecasts are robust against structural breaks. Compared
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to the forecasts in the first two panels, the forecast are more precise in a
number of, but far from all, cases. This suggests that, for the series consid-
ered here, structural breaks are not a major driver of forecast performance.
Importantly for our analysis, the relative results of the different forecasting
methods remains unchanged. In the following, we will therefore focus on
the results from the equally weighted forecasts.

The fifth panel gives the results when using individual specific tuning
parameters. For conciseness, we only report the iterated forecast results;
those for direct forecasts follow the same pattern. The average relative
MSFEs are very similar to those obtained using pooled cross-validation to
obtain the tuning parameters; about as many forecasts are marginally more
precise as are marginally less precise. Again, the relative ranking of the
different methods is not affected. The results we obtain are therefore neither
sensitive to structural breaks nor the way we obtain tuning parameters.

McCracken and McGillicuddy (2019) observe that the relative perfor-
mance of iterated and direct forecasts depends on the period under con-
sideration. Table 2 reports the average of the relative MSFE for three
sub-periods: the great moderation until July 2007, the financial crisis from
August 2007 until July 2009, and the recent recovery from August 2009 on-
wards. In the last subsample, we excluded forecasts for the federal funds
rate as it was near constant for this period and the resulting good forecasts
of the prevailing mean model led to odd behavior of some MSFE ratios.

The first panel in Table 2 shows the results for the iterated forecasts
in the great moderation period. The relative ranking of the dimension re-
duction methods is the same as that of the entire forecast sample, which is
not surprising given that most of the forecast sample is in this subsample.
Again, only random subset regression and random projection consistently
beat the benchmark and the univariate AR. The second panel contains the
average relative MSFEs of the direct forecasts. The pattern is similar to
the one for the entire forecast period: iterated forecasts are more precise
when combined with dimension reduction over the variable space and direct
forecasts are more precise when combined with dimension reduction over
the variable-lag space. LASSO favors iterated forecasts, whereas the BVAR
is equally precise with the pseudo-iterated and direct approach.

The third and fourth panel contain the results for the financial crisis.
Here, the value of additional variables for forecasting appears to be reduced:
for h = 1 and h = 3 the (direct) univariate AR produces the most precise
forecasts. For h = 6 the direct BVAR and for h = 12 iterated forecasts from
the LASSO are more precise. In this sub-period the pattern between direct
and iterated forecasts changes and the direct forecast is the more precise
version of nearly all forecasting methods; only the LASSO retains a clear
preference for iterated forecasts.

The results for the period since the financial crisis are displayed in the
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bottom two panels of Table 2. The pattern from the pre-crisis period
reemerges. Random subset regression and random projection deliver the
most accurate results followed by LASSO. Iterated forecasts are now even
more clearly favored. Thus, similar to McCracken and McGillicuddy (2019),
we observe a shift in relative forecasting performance between iterated and
direct forecasts. Iterated forecasts are generally preferred but direct fore-
casts outperforming during the financial crisis. This also coincides with the
intuition that direct forecasts are more robust to misspecification, which will
be larger in periods of extreme events such as the financial crisis.

4.1.2 Forecast accuracy for individual series

The average performance of the forecasting techniques could potentially
mask heterogeneity of performance across series. We generate box plots
of the relative MSFE of each series and forecasting method for h = 1 and
h = 3 in Figure 1. Tables for the individual series are in the online appendix.
The plots show whether forecasting methods are more or less precise than
the benchmark for a substantial proportion of the series. For h = 1, only
random subset regression results in forecasts that are more precise than the
benchmark for all series. Random projection and LASSO result in forecasts
that are more precise for nearly all series or with only minimal loss. Random
compression, BVAR, and the univariate model are similar with mildly larger
loss. FAVAR and PLS, in contrast produce forecasts that are less accurate
than the benchmark for a larger number of series.

The results for h = 3 in the bottom plot of Figure 1 show that a similar
pattern emerges for multi-step forecasts. Random subset regression, random
projection, LASSO and BVAR produce forecasts that do not lead to sub-
stantial losses in accuracy for any of the series, where dimension reduction in
the variable-lag space reduces upwards outliers. The factor models, in con-
trast, produce forecasts that are worse than the benchmark for a majority
of series. The same pattern continues for larger horizons.

In order to compare iterated and direct forecasts, Figure 2 shows box
plots of the ratio of MSFEs of iterated forecasts over that of direct forecasts.
A ratio greater than one implies that the direct forecast is more precise and a
ratio below one that the iterated forecast is more precise. While all methods
have more precise iterated forecasts for some series and direct for others,
some interesting patterns emerge. The univariate model and dimension
reduction methods that work on the variable-lag space tend to deliver large
gains for many series from direct models. Dimension reduction methods that
work on the variable space are more likely to deliver improvements over the
benchmark with iterated forecasts but these improvements are relatively
small. This is also true for the LASSO but the improvements of the iterated
forecasts are large for a few series. Again, these patterns continue for larger
horizons.
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Figure 1: Relative MSFE of iterated forecasts for h = 1 and 3

Note: The box plots show the relative MSFEs per forecasting method, where the
elements in the box plot are the MSFE of each method relative to the benchmark,
prevailing mean per series. The top plot is for h = 1 and the bottom plot for h = 3.
The order of methods corresponds to that in the tables.
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Figure 2: Relative MSFE of iterated against direct forecasts for h = 3

Note: The figures displays box plots for each forecasting method, where the elements
in the box plot are the ratio of MSFE of iterated over direct forecasts per series.

4.1.3 Tests for equal predictive accuracy

Given the distribution of MSFE across series, are some of the forecasting
methods significantly more accurate? Table 3 and 4 report the number
of series for which the test statistic of Diebold and Mariano (1995) rejects
the null of equal forecast accuracy. Rejection means that the methods in
columns have a significant smaller square loss than the methods in rows. Ta-
ble 3 contains the results for h = 1. For most combinations of methods only
very few series have significant differences in forecast accuracy. Notable ex-
ceptions, however, are the factor models, which are significantly worse than
the univariate AR, the random subspace methods, LASSO, and BVAR for a
sizable number of series. Additionally, random projection in the variable-lag
space delivers results that are more accurate than random compression and
BVAR for five and six series.

The results for h = 3 are in Table 4. For each forecasting methods we
now have the choice between iterated and direct forecast. In order to keep
the table concise, we use the previous results that the dimension reduction
methods in the variable space are more precise with the iterated approach
and those in the variable-lag space with the direct approach and report the
results that correspond to the method in the table. The results mirror those
of the one-step ahead forecast: the factor based methods are significantly
worse than the other methods. An interesting exception, however, is the
variable-lag space FAVAR model, which is significantly worse only for few
series but which is significantly better than the other factor based methods
for six or eight series. This does not depend on whether the other factor
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Table 3: Diebold-Mariano test statistics for square loss, h = 1

AR FAVAR PLS RS RP RC L B
v v/l v v/l v v/l v v/l v v/l

AR - 0 1 0 1 2 2 5 2 0 2 2 2
FAVAR(v) 8 - 3 2 2 4 2 8 4 4 4 5 4

FAVAR(v/l) 7 3 - 3 5 6 6 8 7 4 7 6 5
PLS(v) 8 0 3 - 2 4 2 8 4 4 4 5 4

PLS(v/l) 7 3 1 3 - 6 6 7 5 5 5 5 5
RS(v) 2 0 1 0 2 - 1 2 1 1 1 0 2

RS(v/l) 1 1 1 1 1 2 - 1 2 1 2 2 3
RP(v) 0 0 1 0 1 2 2 - 1 0 1 1 1

RP(v/l) 1 0 2 0 1 4 2 3 - 1 2 4 1
RC(v) 5 0 2 0 2 2 3 7 5 - 5 3 4

RC(v/l) 2 0 2 0 1 4 2 2 6 1 - 4 1
LASSO 1 0 1 0 1 2 1 1 2 0 2 - 2
BVAR 3 1 1 1 2 3 4 3 6 1 6 3 -

Note: The table reports the number of series for which the test statistic
of Diebold and Mariano (1995) rejects the null of equal forecast accuracy.
Rejection means that the methods in columns have a significant smaller
square loss than the methods in rows. The methods are: univariate AR,
FAVAR, PLS, random subset regression (RS), random projection (RP),
random compression (RC), LASSO (L), and BVAR (B). ‘v’ denotes di-
mension reduction in the variable space and ‘v/l’ dimension reduction in
the variable-lag space.

methods use iterated or direct forecast. This confirms the view that if factor
based methods are preferred, factors should be extracted from the variable-
lag space. For larger forecast horizons, the pattern remains the same even
if fewer series show significant differences.

4.2 Density forecasts

4.2.1 Average forecast accuracy

Table 5 shows the average ratios of the log score of the different forecasting
methods to that of the prevailing mean, where, in contrast to the previous re-
sults for the MSFE, a higher number indicated better forecast performance.
The top panel represents the iterated forecasts and the second panel the
direct forecasts. The results show that iterated random subset regression
and BVAR yield the highest log scores. Iterated forecast generally are more
accurate even for many forecast with dimension reduction in the variable-lag
space. The choice of dimension reduction of variable space versus variable-
lag space is less clear cut: for most methods dimension reduction over the
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Table 4: Diebold-Mariano test statistics for square loss, h = 3

AR FAVAR PLS RS RP RC L B
v v/l v v/l v v/l v v/l v v/l

AR - 0 1 0 0 2 0 2 2 0 2 1 1
FAVAR(v) 12 - 6 0 4 13 2 13 6 9 6 10 8

FAVAR(v/l) 1 0 - 0 0 2 0 1 3 0 1 1 0
PLS(v) 12 1 6 - 4 13 2 13 6 9 6 10 8

PLS(v/l) 2 0 8 0 - 4 1 6 9 2 9 5 8
RS(v) 0 0 0 0 0 - 0 0 1 0 0 1 2

RS(v/l) 0 0 0 0 0 0 - 0 0 0 0 0 0
RP(v) 0 0 1 0 0 1 0 - 1 0 1 2 1

RP(v/l) 1 0 0 0 0 2 0 1 - 0 0 0 0
RC(v) 0 0 1 0 0 3 0 3 2 - 2 3 3

RC(v/l) 1 0 0 0 0 2 0 1 3 0 - 1 1
LASSO 1 1 2 1 1 2 1 2 2 1 2 - 2
BVAR 0 0 0 0 0 1 0 0 0 0 1 0 -

Note: The methods that reduce dimension in the variable space are iterated
forecasts and those that reduce dimension in the variable-lag space are direct
forecasts. For further details see footnote of Table 3.

variable-lag space is more accurate but the opposite is true for random pro-
jection. However, a constant result throughout is that the best factor model
is the direct FAVAR with factors extracted from the variable-lag space.

The averages in the top two panels of Table 5 include two series, which
have relatively extreme log scores for all methods: ‘housing starts’ and
‘VXO’. Unlike the MSFE, where these series had small relative MSFEs,
which would not overly influence the average, some log scores are now very
large and can influence the averages unduly. In order to investigate the
robustness of our results, the third and fourth panel of Table 5 report the
averages that exclude those series. For h = 1, LASSO is now the most accu-
rate, followed by random subset regression, which reverses the finding when
including ‘housing starts’ and ‘VXO’. The multi-step forecasts for h = 6
and 12 are most precise using random subset regression and the BVAR. For
h = 12, no method beats the benchmark. Across forecast horizons, iterated
forecasts are more precise for the majority of forecasting methods. The re-
sult for the factor models remains untouched: Direct FAVAR with factors
extracted from the variable-lag space is the most accurate factor model and
not too far off the best methods.

Table 6 reports the average relative log score over the three sub-samples,
where we again exclude ‘housing starts’ and ‘VXO’. The first panel shows
the results for the great moderation period. The most precise forecasts for
all horizon are from the iterated random subset regression in the variable-lag
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space. The iterated forecasts are more precise the vast majority of cases: 32
out of 39 combinations of method and forecast horizon. The second panel
gives the results for the financial crisis. Here the picture is more mixed. The
best forecasts for h = 1 is from the LASSO. For h = 3 and 6, PLS with
factors from the variable-lag space is most accurate followed by FAVAR
and PLS with factors from the variable space and iterated LASSO. At h =
12 the direct LASSO is most precise. During the financial crisis, direct
forecasts are more competitive: the direct forecasts beat the iterated in 16
cases and are more precise than the benchmark for the majority methods
and horizons. In the last sub-period, direct density forecasts remain more
competitive compared to the point forecast: in 13 out of 39 cases they beat
the corresponding iterated forecast and for h = 3 and 6 they provide the
most accurate forecast with the BVAR and random subset in the variable-lag
space.

4.2.2 Forecast accuracy for individual series

Figure 3 shows box plots for the relative log scores excluding the series
‘housing starts’ and ‘VXO’. The top plot is for h = 1 and the bottom plot
for h = 3. The box plot for h = 1 shows that the log scores of the random
subspace methods, LASSO, BVAR, and AR improve upon the benchmark
for (nearly) all series. The performance of the factor models is more mixed
with improvements for some variables but deterioration for others. The
results for h = 3 indicate that beating the benchmark is more difficult at
larger horizons. The factors models produce iterated forecasts that are more
likely to be inferior to the benchmark, whereas the other methods beat the
benchmark for some series and are beaten for others. The results for larger
h follow the same pattern.

4.2.3 Tests for equal predictive accuracy

Table 7 shows the number of series for which the test statistic of equal fore-
cast accuracy of Diebold and Mariano (1995) rejects the null for (negative)
log score loss for h = 1. Rejection means that the methods in columns have
a significant smaller loss (i.e. larger log score) than the methods in rows. As
this is a variable by variable comparison, we included all series in Diebold-
Mariano test statistics. The pattern is very similar to the one for the point
forecast: Factor models are significantly worse for a large number of series.
The random subset and random projection statistically beat other methods
for a large number of series.

The results of the Diebold-Mariano statistics for h = 3 are in Table 8.
Again, the patterns are similar to those of the point forecasts. The factor
models are significantly less accurate than other methods with the exception
of the FAVAR model in the variable-lag space. For h = 3, the random
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Figure 3: Relative log score of iterated against prevailing mean for h = 1
and 3

Note: The box plots show the relative log score per forecasting method, where the
elements in the box plot are the log score of each method relative to the benchmark,
prevailing mean per series. The top plot is for h = 1 and the bottom plot for h = 3.
The box plots exclude the results for the series ‘housing starts’ and ‘VXO’.
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Table 7: Diebold-Mariano test statistics for log scores, h = 1

AR FAVAR PLS RS RP RC L B
v v/l v v/l v v/l v v/l v v/l

AR - 0 4 0 0 10 7 11 2 4 5 4 2
FAVAR(v) 13 - 7 0 6 13 10 13 13 9 8 9 7

FAVAR(v/l) 4 1 - 1 2 7 10 5 4 7 6 6 4
PLS(v) 13 6 7 - 6 13 10 13 13 9 8 9 7

PLS(v/l) 11 4 10 4 - 12 13 11 9 11 11 9 6
RS(v) 0 0 2 0 0 - 5 0 0 1 3 2 0

RS(v/l) 2 0 2 0 0 2 - 2 0 1 2 4 1
RP(v) 0 0 2 0 0 7 6 - 1 2 3 4 1

RP(v/l) 4 0 3 0 0 7 6 5 - 4 4 3 1
RC(v) 4 0 1 0 0 6 8 6 6 - 5 6 4

RC(v/l) 4 0 0 0 0 5 7 4 4 5 - 6 5
LASSO 4 1 4 1 2 4 6 4 4 5 5 - 3
BVAR 7 3 7 3 2 10 9 9 6 8 8 9 -

Note: The table reports the number of series for which the test statistic of
Diebold and Mariano (1995) rejects the null of equal forecast accuracy for
negative log score loss. Rejection means that the methods in columns have a
significant larger log score than the methods in rows. For further details see
footnote of Table 3.

Table 8: Diebold-Mariano test statistics for log scores, h = 3

AR FAVAR PLS RS RP RC L B
v v/l v v/l v v/l v v/l v v/l

AR - 0 5 0 2 6 0 8 1 5 5 5 6
FAVAR(v) 12 - 12 1 11 13 5 13 11 10 13 11 11

FAVAR(v/l) 1 0 - 0 0 2 0 2 0 0 4 2 3
PLS(v) 12 7 12 - 11 13 5 13 11 10 12 11 11

PLS(v/l) 4 0 10 0 - 6 2 6 2 7 11 9 9
RS(v) 1 0 4 0 0 - 0 2 0 4 5 3 5

RS(v/l) 0 0 0 0 0 0 - 0 0 0 0 1 1
RP(v) 1 0 4 0 0 4 0 - 0 4 4 4 5

RP(v/l) 1 0 5 0 2 7 0 7 - 5 6 5 6
RC(v) 2 0 4 0 1 4 1 3 2 - 10 5 7

RC(v/l) 1 0 1 0 0 2 0 2 1 0 - 1 5
LASSO 2 1 3 1 2 3 1 3 2 3 4 - 4
BVAR 1 0 1 0 0 3 0 2 0 0 1 1 -

Note: The methods that reduce dimension in the variable space are iterated
forecasts and those that reduce dimension in the variable-lag space are direct
forecasts. For further details see footnote of Table 7.
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subspace methods are less dominant compared to h = 1. The BVAR, which
was beaten for many series at h = 1, is significantly more accurate for more
series at h = 3. At larger horizons, the factor models remain significantly
worse for most series and random subset models significantly more accurate.

5 Conclusion

This paper compares dimension reduction methods for large vector autore-
gressions for multi-step ahead point and density forecasts. A few patterns
emerge from the analysis. The first is that random subspace methods, in
particular random subset regression and random projection, generally de-
liver the most accurate point and density forecasts. This is true irrespective
of whether the randomization is over the variable space or the variable/lag
space. The LASSO is the next most accurate method.

The decision between iterated and direct forecasts appears to be con-
nected to the decision of dimension reduction in the variable or variable/lag
space. The combinations of iterated forecasts and dimension reduction in
the variable space consistently beat their direct counter parts. When the
dimension reduction is in the variable/lag space, the iterated forecast looses
its advantage over the direct forecast. This is most notably so for the factor
model. The reason for this could be that the dimension reduction introduces
a model misspecification when done in the variable/lag space, which effects
the direct forecast to a lesser extent. In a Monte Carlo experiment, reported
in the online appendix, we show that this pattern can be replicated and does
not depend on the choice of DGP.

Finally, when factor models are preferred, for example due to the in-
terpretability of estimated factors, the direct FAVAR model with principal
components extracted from the full variable-lag regressor matrix delivers the
most accurate point and density forecasts.
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