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Abstract

This paper presents a method for selecting variables and determining
parameter heterogeneity in Bayesian hierarchical panel data models.
Mixture distributions are used as priors for the mean and the variance
of the individuals’ parameters. Selection indicators determine the best
fitting component of each mixture distribution and indicate whether
the mean parameter is non-zero and whether the parameters are het-
erogeneous. The method is applied to two panel data sets. The first
is on inflation of US CPI sub-indices and the results suggest that a
heterogeneous panel AR model with lagged, first principal component
is the preferred model. A second application to house price inflation
across US metropolitan statistical areas shows that the model includes
either the autoregressive component or the lagged spatial components,
but not both at the same time.
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1 Introduction

This paper proposes a Bayesian method for selecting variables and deter-
mining parameter heterogeneity in panel data models. The selection method
uses mixture distributions for the priors of two hyperparameters: the mean
and the variance of the individuals’ parameters. Each mixture distribution
contains two components: a narrow distribution that implies a hyperparam-
eter that is effectively zero and a relatively flat distribution that allows for a
large hyperparameter. The component of the respective mixture is selected
using a binary selection indicator. The posterior probability of the selection
indicator reflects the relative fit of each mixture component to the distribu-
tion of the hyperparameter, indicating either a negligible hyperparameter
size or a relatively large hyperparameter.

The first mixture is for the variance of the individual specific parame-
ters, which is typically modeled using an inverse Gamma or, in a multivariate
context, an inverse Wishart distribution. A complication with these distri-
butions is that they do not have parameterizations that imply uninformative
priors (Gelman, 2006). Since one of the two components of the prior mix-
ture needs to allow for comparatively large mean parameters or variances, it
needs to be a relatively vague prior. I, therefore, model parameter variances
using the scale mixture formulation of Huang and Wand (2013). Using the
scale mixture, the prior distribution of each parameter’s standard deviation
is the half-t distribution. The scale parameter of the half-t distribution can
be set arbitrarily large, to yield a vague prior.

The second mixture is for the mean of the individuals’ parameters. Here,
I use the idea of stochastic search variable selection (SSVS) of George and
McCulloch (1993), which uses a mixture of two normal distributions: a
normal distribution that has substantial support only for a narrow region
around zero and another that has support for a large region of the real line.
Together with the mixture for the parameter variance, this is a panel SSVS
method: variables with zero mean and parameter homogeneity can then be
excluded from the model.

The proposed method is applied to a panel data set of monthly infla-
tion rates of US CPI sub-indices and a panel data set of quarterly house
price inflation of US metropolitan statistical areas (MSAs). In the first ap-
plication, panel SSVS suggests a heterogeneous panel AR model with the
lagged common factor. In the second application on house price inflation,
the autoregressive component again appears to have a non-zero mean and
heterogeneous parameters. Furthermore, spatial lags and lags of regional
and country-wide averages only appear important when the autoregressive
coefficient is not in the model.

This paper addresses a long standing issue in the panel data literature:
parameter heterogeneity affects inference and forecasting when using panel
data. While in the static linear model the mean parameter can be estimated
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without bias (Zellner, 1969), Pesaran and Smith (1995) show that this is not
true in heterogeneous dynamic models where neglected parameter hetero-
geneity will lead to biased estimates. Pesaran et al. (2000) demonstrate
this in the context of modeling international private savings. Pesaran et al.
(2026) analyze the forecast performance of pooled and heterogeneous panel
data models. They show that parameter heterogeneity, if not accounted for,
can severely reduce forecast accuracy; see Pick and Timmermann (2024) for
a survey of the literature on forecasting with panel data.

In the Bayesian context, the hierarchical model of Lindley and Smith
(1972) has been widely used to model parameter heterogeneity, in particular
since it lends itself to estimation via the Gibbs sampler (Gelfand et al., 1990).
Hsiao et al. (1999) demonstrate the usefulness of the hierarchical model for
dynamic heterogeneous panel data models. Albert and Chib (1993) apply
the idea of the hierarchical model to generalized linear models, such as the
probit model, and the method proposed here can equally be employed in
such models.

The heterogeneity model, discussed by Frühwirth-Schnatter et al. (2004),
extends the hierarchical model to allow for clustering of distinct groups of
cross-section units. In each group, the parameter vectors have hyperdistri-
butions as in the hierarchical model of Lindley and Smith (1972) with group
specific mean vectors and covariance matrices. See Frühwirth-Schnatter
(2011) and Grün (2018) for reviews of the heterogeneity model. The vari-
able and heterogeneity selection of this paper can therefore either be applied
to each group separately or the selection can be pooled across groups.

The approach developed here is inspired by SSVS of George and Mc-
Culloch (1993) for variable selection in cross-sectional models. SSVS has
previously been used for panel data models, where SSVS is used on each
of the parameters separately, which contrasts with the modeling of param-
eter heterogeneity via the covariance matrix in this paper. For instance,
Gilbride et al. (2006) apply SSVS to the parameters of a panel regression
for each cross-section unit separately. Cuaresma et al. (2016) and Dovern
et al. (2016) use the SSVS in Bayesian global VAR models, where the SSVS
prior on each coefficient is used in an approach akin to shrinkage.

Similarly, Koop and Korobilis (2016) address model uncertainty in panel
VAR models by using SSVS on the different parameters of the panel VAR.
They distinguish parameter restrictions on three distinct groups of parame-
ters: first, restrictions that set the parameters of lags of variable of one unit
in the equation for the variables of another unit to zero; second, restrictions
that equate the covariance matrix of errors that determine contemporaneous
correlations between variables of different units to zero; and finally, restric-
tions that, across units, equate the parameters of lags of the dependent
variables for a given unit. These restrictions can be modeled with the panel
SSVS suggested here. For example, the last restriction of parameter homo-
geneity is set up via numerous pairwise comparisons. The mixture of inverse
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Wishart distributions suggested in this paper targets the same restriction in
a more parsimonious manner.

SSVS priors have also been used as shrinkage priors for forecasting. Cross
et al. (2020) use the SSVS priors on VAR models, as introduced by George
et al. (2008), and find that they are competitive with other shrinkage priors.
Extensions of the approach here to forecasting are equally possible.

A nonparametric version of SSVS for the panel data model has been
proposed by Kim et al. (2009). They use spiked Dirichlet process priors for
the individual parameters to determine inclusion of the respective regressor
for each cross-section unit separately. The same idea can be extended for
the mean parameter and parameter variance in the approach in this paper.
This is, however, beyond the scope of the current paper.

The paper proceeds as follows. The next section discusses the Bayesian
hierarchical panel data model. Section 3 introduces the stochastic search se-
lection for heterogeneity and variable selection. Section 4 applies the method
to two panel data sets, inflation rates of sub-indices of US CPI and house
price inflation rates for US MSAs. Finally, Section 5 concludes. The Gibbs
sampler is described in Appendix A.

2 The Bayesian panel data model

Consider the panel data model

yit = β′
ixit + εit, εit ∼ N

(
0, η−1

i σ2
ε

)
(1)

where βi is a K× 1 vector of parameters, xit is a K× 1 vector of regressors,
including the intercept, i = 1, 2, . . . , N denotes cross section units, and
t = 1, 2, . . . , T denotes time periods. Furthermore, we stack the observations
to obtain yi = (yi1, yi2, . . . , yiT )

′ and Xi = (xi1,xi2, . . . ,xiT )
′.

The coefficient vector, βi, is modeled via the hierarchical model of Lind-
ley and Smith (1972). Hyperpriors connect the individuals’ coefficient vec-
tors, such that

βi ∼ N
(
β̄,Σ

)
(2)

where β̄ is a K × 1 vector of mean parameters and Σ a K ×K covariance
matrix. When using conjugate prior distributions, the parameters in the
hierarchical model are easily estimated using the Gibbs sampler (Gelfand
et al., 1990).

The prior for the mean parameter vector, β̄, is the normal with prior
parameters b0 and S0,

β̄ ∼ N(b0,S0) (3)

where b0 is a K × 1 vector of mean parameters and S0 a K ×K covariance
matrix.
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Figure 1: Prior mixtures of half-t distributions
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Note: The left plot displays two half-Cauchy distributions (half-t distributions
with νσ = 1) with aj = 0.1 and aj = 1 and the right plot displays two half-t
distributions with νσ = 6, aj = 0.1 and aj = 1.

The prior for the parameter covariance matrix, Σ, is typically the inverse
Wishart distribution. It is, however, difficult to formulate uninformative
priors for the inverse Wishart prior (Gelman, 2006). For this reason, I use
the prior scale mixture of Huang and Wand (2013), where

Σ|A ∼ invWishart
(
νσ +K − 1, 2νσA

−1
)

(4)

where νσ is the degrees of freedom, A is a diagonal scale matrix. The jth
element on the diagonal of A, αj , is independently distributed as

αj ∼ invGamma
(
1/2, 1/a2j

)
(5)

where the scale parameters, aj , j = 1, 2, . . . ,K are the prior parameters
that determine the shape of the scale mixture distribution. Huang and
Wand show that the mixture implies a half-t(νσ, aj) marginal distribution
for each standard deviation in Σ. This, in turn, suggests that arbitrarily
large values of aj lead to relatively uninformative priors for the standard
deviation.

Figure 1 plots two half-t distributions: in the left plot, νσ is set to 1,
which implies a half-Cauchy distribution, and aj = 0.1 or 1. In the right
plot νσ = 6 and, again, aj = 0.1 or 1. In both plots, the larger aj leads to
a comparatively flat distribution, which support substantially larger values
of σj compared to the distributions with aj = 0.1.

Finally, I model the distribution of the error term, εit, via a mixture
distribution with inverse Gamma-2 priors for the variance, σ2

ε , and Gamma-
2 priors for the mixture term, ηεi,

σ2
ε ∼ invGamma2

(
νε, νεs

2
ε

)
and ηεi ∼ Gamma2 (νη, νη)
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with prior parameters νε, s
2
ε and νη. Geweke (1993) shows that this implies

a t-distribution for the error term.

3 Stochastic search selection

3.1 Parameter heterogeneity

A question is whether the parameters in the panel model (2) are, in fact,
heterogeneous, that is, whether the variance parameters are non-zero. To
answer this question, I use a two component mixture distribution as the
prior of each diagonal element in Σ, σ2

j , which is defined using the scale
coefficient aj in the prior distribution in (4) and (5).

Since priors for the covariance matrix in (4) and (5) imply half-t(νσ, aj)
distributions for the standard deviations, σj , we can define the first mixture
component with a small value of aj , say a0j , to have most of its mass close
to zero. The second mixture component with a large value of aj , say a1j
yields a distribution that offers substantial support for larger σj . The first
component is then a prior that implies a negligible parameter variance, such
that homogeneity of the parameter is a reasonable conclusion, whereas the
second component implies parameter heterogeneity.

Formally, the mixture is

σj |κj ∼ κjhalf-t(νσ, a1j) + (1− κj)half-t(νσ, a0j) (6)

where κj is a latent, binary selection indicator with P (κj = 1) = 1 −
P (κj = 0) = pj . Thus, κj = 0 implies half-t(ν, a0j) and, when κj = 1,
the prior distribution for parameter j is half-t(ν, a1j). The posterior proba-
bility for κj = 1 is then the probability that parameter j is heterogeneous
in the model.

Two crucial parameters are a0j and a1j , since they determine the mag-
nitude of parameter heterogeneity that is allowed under the half-t prior dis-
tributions. While the half-t distribution with aj = 1, plotted in Figure 1, is
comparatively flat, the distribution using aj = 0.1 only has meaningful mass
for small values of σj . Choices for these two hyperparameters are discussed
in Section 3.3.

A second choice concerns the value of the degrees of freedom, νσ. The
half-Cauchy distribution on the left of Figure 1 is less informative when aj
is large compared to a half-t distribution with νσ = 6. The disadvantage of
the half-Cauchy distribution is, however, that the distinction between the
distributions with different aj is less pronounced at the crossing point, which
is given by

ϕj =

(
νσ

a
2/(νσ+1)
0j − a

2/(νσ+1)
1j

a
−2νσ/(νσ+1)
1j − a

−2νσ/(νσ+1)
0j

)1/2
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This may lead to a less sharp distinction between homogeneity and het-
erogeneity of a parameter. Since uninformativeness of the prior with large
aj is not a requirement for the selection, larger νσ could be used in order
to maintain the relatively sharper distinction between the two distributions
around the crossing point.

Furthermore, Huang and Wand (2013) show for the example of a 2 ×
2 covariance matrix, that the implied marginal prior for the correlation
coefficient is

p(ρ) ∝ (1− ρ2)νσ/2−1

For νσ = 1, this is a U-shaped distribution with most of the support for
values close to −1 and 1, for νσ = 2 the distribution is uniform, and for νσ >
2 the distribution has an inverted U-shape where the support is increasingly
concentrated around 0 as νσ increases. This suggests that values of νσ
greater than unity may be preferable.

The model is completed with priors for the latent variable, κj , for which
I assume independent Bernoulli priors

p(κ) =
K∏
j=1

p
κj

j (1− pj)
(1−κj)

where κ = (κ1, κ2, . . . , κK)′.
Since the distributions are conjugate, estimation via the Gibbs sampler is

straightforward, and estimates of the posterior probability is easy to obtain.
The conditional distributions required for the Gibbs sampler are detailed
in Appendix A.

3.2 Variable selection

The mixture for the parameter variances can be combined with mixture
distributions for the mean parameter vector, β̄, in order to analyze variable
inclusion. The analysis for the mean parameter vector uses the idea of SSVS
of George and McCulloch (1993). Since the exclusion of variables from the
model requires parameter homogeneity and a zero mean parameter, SSVS
is applied to each mean parameter, β̄j , j = 1, 2, . . . ,K. The prior for the
mean parameter in (3) is replaced by a mixture of normals

β̄j |γj ∼ γjN
(
0, h21j

)
+ (1− γj)N

(
0, h20j

)
(7)

where γj is a binary selection indicator, similar to κj in the mixture (6).
If γj = 1, the first mixture with variance h21j is selected and the second

component with variance h20j is selected when γj = 0. We again set h0j to a
small value, which leads to a narrow distribution around 0. If h0j yields a
sufficiently narrow distribution, it can be assumed that β̄j is zero. The first
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Figure 2: Prior mixture of normal distributions
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Note: The plot displays two normal distributions that enter the mixture
for β̄j with standard deviation 0.025 for the first distribution in the
mixture and 0.25 for the second distribution in the mixture.

component with large h1j implies a flatter tailed distribution around zero,
such that non-zero values for β̄j are supported.

Note that the two distributions intersect at

|ξj | = h1jh0j

√
2
log(h1j/h0j)

h21j − h20j
(8)

The choice of the intersection point, which is determined by h0j and h1j ,
inform the prior magnitude of the coefficient that justifies inclusion or ex-
clusion of the variable. We will turn to the choice of hyperparameters in
Section 3.3.

Similar to the case of half-t distributions above, one could use a prior
distribution that is uninformative, such as extremely large h21j or a Cauchy
distribution. Also here, however, an uninformative prior will not necessarily
improve selection compared to a prior that allows for larger variances and
has a sharper distinction to the narrower distribution around the crossing
point. For this reason, I will use normal distributions in the mixture for β̄j ,
which is in line with the literature on SSVS cited above.

The hierarchical model can be extended by putting priors on h0j , h1j ,
and qj = P(γj) (Cross et al., 2020) and on a0j , a1j , and pj . For simplicity,
however, I will keep these parameters fixed in the Gibbs sampler.

The K univariate mixtures can be combined into a multivariate mixture
distribution,

β̄|γ ∼ N [0,H(γ)RH(γ)] (9)

where γ = (γ1, γ2, . . . , γK)′ is a K × 1 vector of binary indicators, R is a
prior correlation matrix, and H(γ) is a K × K diagonal matrix with j-th
diagonal element h1j if γj = 1 and h0j if γj = 0. In the applications below,
I will assume that the mean parameters are a priori uncorrelated and set
R = IK , where IK is the K-dimensional identity matrix.
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Finally, the model requires a prior distribution for γ and I assume prior
independence of γj from γl and κl, ∀j, l

p(γ) =

K∏
j=1

q
γj
j (1− qj)

1−γj

If γj = κj = 0, the variable can be removed from the model since all
parameters, β̄j , are homogenous and zero. If γj = 1 and κj = 0, variable j
should be included but the parameter can be modeled as homogeneous. If
κ = 1, the variable has heterogeneous coefficients and is part of the model
irrespective of the value of γj .

3.3 Choosing the hyperparameters

The hyperparameters h0j and h1j for the mean parameter vector and the
hyperparameters a0j , a1j and νσ for the parameter covariance matrix need
to be chosen by the user.

Mean parameters The crossing points of the two hyperprior distribu-
tions, |ξj |, is given in (8). For β̄, we can lean on the insights of George
and McCulloch (1993; 1995; 1997) and Chipman et al. (2001) for SSVS in
the linear model. George and McCulloch (1993) consider intersections of the
marginal distributions of βj : N(0, σ

2
β,j+h20j) and N(0, σ2

β,j+h21j), using least

squares estimate of the parameter variances, σ2
β,j together with the tuning

parameters h0j and h1j .
In the case of the hierarchical model, a similar approach would use the

least squares estimate of the parameter covariance matrix

Σ̂LS =
1

N

N∑
i=1

(
β̂i −

¯̂
β
)(

β̂i −
¯̂
β
)′

− 1

N

N∑
i=1

σ2
i (X

′
iXi)

−1 (10)

where β̂i is the least squares estimate of βi and
¯̂
β = 1

N

∑N
i=1 β̂i (Mad-

dala et al., 1997). The intersection of normal distributions with variances
[Σ̂LS]jj + h20j and [Σ̂LS]jj + h21j could then be chosen such that parameters
smaller than the intersection point are economically unimportant, where [·]jj
denotes the jth element on the diagonal of a matrix.

A downside is that Σ̂LS need not be positive definite in finite sample.
Using

Σ̃LS =
1

N

N∑
i=1

(
β̂i −

¯̂
β
)(

β̂i −
¯̂
β
)′

(11)

guarantees positive definiteness but may overestimate the parameter vari-
ances in finite sample.
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An alternative is to estimate the intersection of the posterior distribu-
tions of the mean parameter using the Gibbs sampler, where β̄j is sampled
for fixed h0j and h1j . The intersection of the posterior distributions is then
calculated for each draw in the Gibbs sampler. Since the posterior dis-
tributions need not be centred around the same posterior mean, only one
intersection point may be meaningful whereas the other can be at a point
that is in the tails of both distributions. I determine the relevant intersection
point by plotting the posterior densities of β̄j . In the applications below, I
report the intersection that is at a high probability region of the posterior
together with the intersection of the prior distributions. Choices of h0j can

be proportional to [Σ̂LS]
1/2
jj and h1j = c · h0j , for c = 10 or 100.

Parameter variances As discussed above, the choice of νσ determines the
informativeness of the prior distribution, the sharpness of the distinction at
the crossing point of the two prior distributions in the mixture, and the
implied correlation of the Wishart distribution. In order to balance these
three considerations, I will use νσ = 6 in both applications.

One can then choose a0j and a1j to obtain a desired intersection of the
prior distributions in the mixture in (3.1). Additionally, as in the case of the
mean parameter vector, it is informative to consider the implied intersection
of posterior distributions. Conditional on a0j and on a1j , we can draw
two parameter variances and determine the intersection of their distribution
in the Gibbs sampler. Since the conditional posterior of σj is an inverse
Gamma distribution, the intersection is (d0−d1)/[ν log(d0/d1)], where d0 =
Ns2β,j+2νσ[A

−1
0 ]jj , d1 = Ns2β,j+2νσ[A

−1
1 ]jj , s

2
β,j is the j-th diagonal element

of 1
N

∑N
i=1

(
βi − β̄

) (
βi − β̄

)′
, and ν = N + νσ.

Choices for a0j prior to the evaluation using the Gibbs sampler can be
based on the observation that, in the absence of parameter heterogeneity
and for large N , an estimate of the parameter covariance matrix is S =
1
N

∑N
i=1 σ

2
i (X

′
iXi)

−1. Therefore, a20j can be set proportional to the j-th

diagonal element of S, and a21j to c · a20j , where c = 100 or 1000.

4 Application to CPI sub-indices and house prices

This section applies the panel SSVS method outlined above to a panel of
inflation rates of sub-indices of US CPI and to a panel of house price inflation
in metropolitan statistical areas (MSAs) in the USA. The data sets have
previously been employed by Pesaran et al. (2026). The results for each
application are based on 20,000 iterations of the Gibbs sampler, detailed
in Appendix A, with the first 5000 discarded as burn-in.
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4.1 Application to inflation of US CPI sub-indices

The first application analyses the inflation rate of sub-indices of US CPI ob-
tained from the FRED data base. I restrict attention to the period January
2006 to December 2022, since the data for all sub-indices is complete with
this exception of two sub-indices, which I exclude. This results in a panel
data set of N = 184 sub-indices for T = 202 observations after accounting
for the pre-sample.

Pesaran et al. (2026) use an autoregressive panel model with the addition
of the lagged first common factor of the data set obtained via PCA for the
entire data set, the lagged default yield, and the lagged term spread:

yit = β0i + β1iyi,t−1 + β2if̂t−1 + β3idy t−1 + β4itst−1 + εit (12)

where yit denotes the monthly inflation rate of sub-index i in period t, f̂t−1

is the lagged common factor extracted from the CPI sub-indices using the
information up to period t − 1, dy t−1 is the lagged default yield and tst−1

the lagged term spread. For further details see Pesaran et al. (2026).
Since the inclusion of a heterogeneous intercept is not in question, I de-

mean the data for each individual separately in order to focus on the remain-
ing parameters. The inclusion priors are set to p(γj) = p(κj) = 1/K = 0.25
for each mean parameter and parameter variance. The additional priors are
νε = 10, s2ε = 1, and νη = 2.

I set a20j to ca0[S]jj with ca0 either 0.001 or 0.1 and a21j = ca1a
2
0j with

ca1 = 1000, except the second variable where I set ca0 either 0.00001 or 0.001.

Furthermore, h0j = ch0[Σ̂LS]
1/2
jj with ch0 either 0.02 or 0.2, and h1j = ch1h0j

with ch1 = 100. These choices are made to obtain mixtures that lead to
inclusion and exclusion outcomes for each variable, assuming this can be
achieved for reasonably sized parameter values. The contrast will allow me
to judge the size of intersection of the posteriors that leads to one outcome
over another.

Table 1 reports the results, where the upper panel shows the results for
the mean parameters and the lower panel shows the results for the param-
eter variances. For each parameter, the results consist of three lines. The
first line reports the (positive) intersection of the prior distributions. In the
second line is the (relevant) intersection of the posterior distributions. Fi-
nally, the third line gives the posterior probabilities of γj = 1 for the mean
parameters and κj = 1 for the parameter variances. For each variable, the
table has four columns that correspond to the different settings of the tuning
parameters.

A first observation is that for the mean parameter the specification of
the prior for the variance has relatively little influence on the inclusion prob-
abilities. Equally, for the inclusion probabilities of the variance component
in the lower panel, the priors for the mean parameter play only a minor role.
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Table 1: Inflation of CPI sub-indices: inclusion probabilities

Mean parameters, β̄j

ch0 = 0.02 ch0 = 0.2
ca0 = 0.001 ca0 = 0.1 ca0 = 0.001 ca0 = 0.1

AR prior inter. 0.014 0.014 0.143 0.143
posterior inter. 0.121 0.124 0.270 0.273
p(γj = 1) 1.000 1.000 0.255 0.257

PCA prior inter. 0.021 0.021 0.214 0.214
posterior inter. 0.013 0.015 0.075 0.084
p(γj = 1) 0.478 0.599 0.245 0.246

Default yield prior inter. 0.003 0.003 0.030 0.030
posterior inter. −0.003 −0.004 −0.019 −0.017
p(γj = 1) 0.555 0.661 0.251 0.249

Term spread prior inter. 0.013 0.013 0.132 0.132
posterior inter. 0.033 0.034 0.158 0.135
p(γj = 1) 1.000 1.000 0.253 0.252

Parameter variance, σ2
j

ca0 = 0.001 ca0 = 0.1
ch0 = 0.02 ch0 = 0.2 ch0 = 0.02 ch0 = 0.2

AR prior inter.×100 0.005 0.005 0.451 0.451
posterior inter. 0.021 0.009 0.021 0.010
p(κj = 1) 0.864 1.000 0.253 0.247

PCA prior inter.×100 0.000 0.000 0.029 0.029
posterior inter. 0.112 0.104 0.113 0.106
p(κj = 1) 1.000 1.000 0.550 0.487

Default yield prior inter.×100 0.003 0.003 0.341 0.341
posterior inter. 0.002 0.002 0.002 0.002
p(κj = 1) 0.250 0.248 0.252 0.253

Term spread prior inter.×100 0.014 0.014 1.410 1.410
posterior inter. 0.041 0.036 0.040 0.036
p(κj = 1) 0.285 0.285 0.254 0.254

Note: The top panel of the table reports the results for the mean parameters. The first line
for each variable gives the (positive) intersection of the prior distributions, the second line
the intersection of the posterior distributions, and the third line the posterior probability of
γj = 1. The bottom panel reports the results for the parameter variances. The first line
for each variable, again, reports the intersection of the prior distributions, the second line
the intersection of the posterior distributions, and the third line the posterior probabilities
for κj = 1. The results are for four combinations of tuning parameters, ch0 and ca0. ‘AR’
denotes the autoregressive coefficients, ‘PCA’ the coefficients of the first principal component,
‘Default yield’ the coefficients of the default yield, and ‘Term spread’ the coefficients of the
term spread.
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Table 2: Inflation of CPI sub-indices: selected models

ch0 = 0.02, ca0 = 0.001 ch0 = 0.02, ca0 = 0.1

p γj = 1 κj = 1 p γj = 1 κj = 1

16.57 1,4 1,2 10.07 1,2,3,4 2
13.65 1,2,3,4 1,2 8.41 1,2,3,4 –
9.98 1,3,4 1,2 5.31 1,3,4 2
6.43 1,2,4 1,2 4.17 1,4 –

ch0 = 0.2, ca0 = 0.001 ch0 = 0.2, ca0 = 0.1

16.99 – 1,2 6.93 – –
6.54 – 1,2,4 6.43 – 2
5.81 1 1,2 2.44 1 –
5.75 3 1,2 2.36 – 2,3

Note: The table reports the four models that are cho-
sen most often in the Gibbs sampler for different com-
binations of tuning parameters. The column p reports
the percentage of draws for which the model is selected,
where a model is defined as the j for which either γj or
κj equals one. The numbers in the second, third, fifth
and sixth columns denote the variables in the order they
are given in Table 1.

The results for the autoregressive parameter show that the mean param-
eter has a posterior inclusion probability, p(γj = 1|y), of 1 for the smaller
h0j where the intersection of the posteriors is 0.12. For the larger h0j , where
the intersection of the posteriors is 0.27, the inclusion probability is around
the level of the prior. The results for the parameter variance of the au-
toregressive parameter in the lower panel show that the heterogeneity is
selected even if the intersection of the posterior distribution implies modest
heterogeneity.

The mean coefficient for the PCA variable has an inclusion probability
around 0.5 for the smaller h0j where the intersection of the posteriors is
0.13 but an inclusion probability very similar to the prior for the larger h0j .
Parameter heterogeneity is selected for posterior intersections of about 0.1.
The default yield is included only for very small values and the inclusion
probability of parameter heterogeneity does not exceed the value of the
prior. This suggests that the default yield does not play an important role
in the model. The term spread has an inclusion probability of 1 for the
small h0j with an intersection of the posterior of about 0.03 and parameter
heterogeneity inclusion probabilities does not exceed the level of the prior,
which suggests at most a minor importance in the model.

Table 2 considers the inclusion probabilities for the variables jointly. For
each combination of the tuning parameters, it gives the probabilities that
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a model is selected in an iteration of the Gibbs sampler, where a model is
defined by the γj and κj that equals one. It can be seen that for the smaller
ch0, many mean parameters are included but for the larger ch0 the most
often chosen model sets all mean parameters to zero. Furthermore, for the
smaller value of ca0 the autoregressive and the PCA coefficients are selected
as heterogeneous. For the larger ca0, the PCA coefficient is still selected as
heterogeneous relatively frequently.

4.2 Application to US house price inflation

The second application analyses variable inclusion and parameter hetero-
geneity in a spatial autoregressive model for a panel of quarterly house price
inflation in US MSAs from 1975Q1 to 2023Q1. I consider the model of
Pesaran et al. (2026)

yit = αi + βiyi,t−1 + γiyi,t−1(w) + δRiȳ
(R)
i,t−1 + δCiȳ

(C)
t−1 + εit (13)

where yit is the house price inflation for MSA i in quarter t, yit(w) =∑N
k=1,k ̸=iwikykt is the spatially weighted average of house price inflation,

where wik = vik/
∑N

l=1 vil and vik = 1 if MSA k is within 100 miles of MSA

i and zero otherwise. Next, ȳ
(R)
it is the average house price inflation in the

Bureau of Economic Analysis region of MSA i, and ȳ
(C)
t are the country-

wide average house price inflation. The spatial weights are those of Yang
(2021) and I exclude MSAs that have no neighboring MSA within 100 miles,
which leaves N = 362 MSAs for T = 188 periods after accounting for the
pre-sample.

As in the previous application, I assume the intercept should always be
included and heterogeneous and therefore demean the data for each indi-
vidual separately. For the remaining variables, I set the priors to p(γj) =
p(κj) = 1/K = 0.25. The additional priors are νε = 10, s2ε = 1, and
νη = 2. Additionally, I set a20j to ca0[S]jj with ca0 · 100 either 0.025 or 0.5

and a21j = ca1a
2
0j with ca1 = 1000. Furthermore, h0j = ch0[Σ̂LS]

1/2
jj with ch0

either 0.05 or 0.15, except the first variable where ch0 is multiplied by 1.25,
and h1j = ch1h0j with ch1 = 100. Again these choices are made to obtain a
clear separation of inclusion and exclusion outcomes.

The results are in Table 3, which is structured in the same way as Ta-
ble 1. The results in the upper panel suggest that the mean parameter of the
autoregressive component has zero posterior inclusion probability when ch0
is small but a posterior inclusion probability of 1 when ch0 is large and the
intersection of the posterior distribution is 0.867. This result is explained
when considering the inclusion probability of the spatial autoregressive com-
ponent, which is 1 for small ch0, when the autoregressive coefficient was
excluded, and is 0 for the large ch0, when the autoregressive coefficient was
included. This suggests that the two autoregressive coefficients serve a very
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Table 3: House price inflation: inclusion probabilities

Mean parameters, β̄j

ch0 = 0.02 ch0 = 0.2
ca0 = 0.001 ca0 = 0.1 ca0 = 0.001 ca0 = 0.1

AR prior inter. 0.024 0.024 0.073 0.073
posterior inter. 0.539 0.539 0.867 0.867
p(γj = 1) 0.000 0.000 1.000 1.000

SAR prior inter. 0.034 0.034 0.102 0.102
posterior inter. 0.016 0.016 0.017 0.018
p(γj = 1) 1.000 1.000 0.246 0.246

Reg.ave. prior inter. 0.044 0.044 0.131 0.131
posterior inter. 0.058 0.058 0.061 0.061
p(γj = 1) 0.783 0.762 0.252 0.253

Country ave. prior inter. 0.023 0.023 0.068 0.068
posterior inter. 0.041 0.038 0.007 0.010
p(γj = 1) 0.337 0.338 0.242 0.243

Parameter variance, σ2
j

ca0 = 0.001 ca0 = 0.1
ch0 = 0.02 ch0 = 0.2 ch0 = 0.02 ch0 = 0.2

AR prior inter.×100 0.001 0.001 0.014 0.014
posterior inter. 0.027 0.013 0.027 0.013
p(κj = 1) 0.361 0.527 0.254 0.256

SAR prior inter.×100 0.002 0.002 0.031 0.031
posterior inter. 0.039 0.028 0.039 0.029
p(κj = 1) 0.719 0.610 0.246 0.244

Reg.ave. prior inter.×100 0.002 0.002 0.048 0.048
posterior inter. 0.047 0.042 0.047 0.043
p(κj = 1) 0.499 0.554 0.252 0.255

Country ave. prior inter.×100 0.002 0.002 0.031 0.031
posterior inter. 0.011 0.011 0.011 0.011
p(κj = 1) 0.508 0.469 0.250 0.254

Note: ‘AR’ denotes the autoregressive coefficients, ‘SAR’ the spatial autoregressive coeffi-
cients, ‘Reg.ave.’ the coefficients of regional averages, and ‘Country ave.’ the coefficients of
country wide averages. For further information see the footnote of Table 1.
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Table 4: House price inflation: selected models

ch0 = 0.02, ca0 = 0.01 ch0 = 0.02, ca0 = 0.1

p γj = 1 κj = 1 p γj = 1 κj = 1

10.12 2,3 2,3,4 15.29 2,4 –
8.37 2,3 2,4 8.79 2,3,4 –
6.23 2,3 2,3 5.57 2 –
5.23 2,3,4 2,3 5.19 2,3 4

ch0 = 0.2, ca0 = 0.01 ch0 = 0.2, ca0 = 0.1

6.32 1 2,3,4 13.18 1 –
5.39 1 1,2,3 4.75 1 3
3.86 1 1 4.63 1 1
3.61 1 1,2,3,4 4.53 1,3 –

Note: The numbers in the second, third, fifth and sixth
columns denote the variables in the order they are given
in Table 3. For further details, see the footnote of Table 2.

similar function in the model and only one is required. The regional averages
are included for small ch0 with the intersection of the posterior density at
0.058. The country wide averages do not have a high inclusion probability
for either value of ch0.

The results for the parameter variances in the lower panel of Table 3
show relatively small inclusion probabilities for parameter heterogeneity of
the autoregressive coefficients for both ca0. The inclusion of parameter het-
erogeneity for the spatial coefficient is larger at higher intersections of the
posterior densities. The regional averages also have somewhat higher inclu-
sion probabilities for heterogeneity at posterior intersections around 0.47.
For the country wide averages, inclusion probabilities are higher only at
very small intersection points.

The results in Table 4, again, summarize the results per model and mirror
the results above. If the spatial autocorrelation coefficient is included then
the autocorrelation coefficient is excluded and vice versa.

5 Conclusion

This paper proposes a Bayesian method for selecting variables and deter-
mining parameter heterogeneity in panel data models. In a hierarchical
model, the prior for the mean of the individuals’ parameters is modeled
using a mixture of normal distributions using the idea of SSVS of George
and McCulloch (1993). The prior for the variance of the individuals’ pa-
rameters is modeled using a mixture of half-t distributions. In each of the
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mixtures, a binary selection indicator determines the choice of component of
the mixture: one component is a distribution with substantial support only
close to zero, the second component has wide support for non-zero values.
The posterior probability of the selection indicators suggests whether mean
parameters are non-zero and parameters are heterogeneous.

The method is applied to two panel data sets. The first application, a
panel data set on monthly inflation rates of US CPI sub-indices, suggests
that the data can be modeled as a heterogeneous panel AR model with
the lagged principal component added with heterogeneous parameters. The
second application on quarterly house price inflation in US MSAs shows that
different variables play a similar role in the model. The AR component has
a non-zero coefficient when the other variables are not in the model. The
spatial AR variables and regional averages, in contrast, are non-zero when
the autoregressive variable is not included.
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Appendix A The Gibbs sampler

The Gibbs sampler iteratively draws from the following conditional distri-
butions, where |· denotes that the distribution is conditional on the other
parameters in the Gibbs sampler.

• βi|· ∼ N(bi,Si), where bi = Si

(
ηεiσ

−2
ε X′

iyi +Σ−1β̄
)
,

Si =
(
ηεiσ

−2
ε X′

iXi +Σ−1
)−1

.

• σ2
ε |· ∼ invGamma

(
[NT + νε]/2,

1
2

[∑N
i=1 ηεi(yi −Xiβi)

′(yi −Xiβi) + νεσ
2
ε

])
.

• ηεi|· ∼ Gamma
(
[νε + T ] /2, 12

[
νε + σ−2

ε (yi − x′
iβi)

′(yi − x′
iβi)

′]).
• β̄|· ∼ N(µ,Sβ̄), where µ = Sβ̄NΣ−1βi and Sβ̄ =

(
Σ−1 + (HRH)−1

)−1

where H is a K×K diagonal matrix with typical element γjh1j+(1−
γj)h0j and R is a prior correlation matrix. In the applications, I use
R = IK , where IK is the K-dimensional identity matrix.

• Σ|· ∼ invWishart
(
N +K + νσ − 1,

∑N
i=1

(
βi − β̄

) (
βi − β̄

)′
+ 2νσA

−1
)

where A = diag(α1, α2, . . . , αK)

• αj |· ∼ invGamma
(
(νσ +K)/2, νσ

(
Σ−1

)
jj
+ a−2

j

)
where aj = κja1j+

(1− κj)a0j .

• γj |· ∼ Bernoulli(pγ), where pγ = p1/(p1 + p0),
p1 = fN

(
β̄|µ, [H(γj = 1)RH(γj = 1)]−1 +NΣ−1

)
p(γj),

p0 = fN
(
β̄|µ, [H(γj = 0)RH(γj = 0)]−1 +NΣ−1

)
[1− p(γj)],

fN (·) is the multivariate normal pdf, H(γj = 1) is H with the jth
element replaced by h1j and H(γj = 0) is H with the jth element
replaced by h0j , R = IK is the prior correlation matrix.

• κj |· ∼ Bernoulli(pκ), where pκ = q1/(q1 + q0),

q1 = fig

(
αj ; (νσ +K)/2, νσ(Σ

−1)jj + a−2
1j

)
p(κj),

q0 = fig

(
αj ; (νσ +K)/2, νσ(Σ

−1)jj + a−2
0j

)
[1− p(γj)],

fig (·) is the inverse Gamma pdf.
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