Variable Selection, Estimation and Inference for Multi-period Forecasting Problems*

M. Hashem Pesaran
Cambridge University and USC
Andreas Pick
Erasmus University Rotterdam, De Nederlandsche Bank and CIMF
Allan Timmermann
UC San Diego and CREATES

October 11, 2010

Abstract

This paper conducts a broad-based comparison of iterated and direct multi-period forecasting approaches applied to both univariate and multivariate models in the form of parsimonious factor-augmented vector autoregressions. To account for serial correlation in the residuals of the multi-period direct forecasting models we propose a new SUREbased estimation method and modified Akaike information criteria for model selection. Empirical analysis of the 170 variables studied by Marcellino, Stock and Watson (2006) shows that information in factors helps improve forecasting performance for most types of economic variables although it can also lead to larger biases. It also shows that SURE estimation and finite-sample modifications to the Akaike information criterion can improve the performance of the direct multiperiod forecasts.

JEL Classifications: C22, C32, C52, C53
Key Words: Direct forecasts, iterated forecasts, factor augmented VARs, SURE estimation, Akaike information criterion.

[^0]
1 Introduction

Economists are commonly asked to forecast uncertain outcomes multiple periods ahead in time. For example, when the economy is in a recession a policy maker would want to know when a recovery begins and so is interested in forecasts of output growth at multiple horizons. Similarly, fixed-income investors are interested in comparing forecasts of spot rates multiple periods ahead in time against current long-term interest rates in order to arrive at an optimal investment strategy, and stock market investors could consider the effect of demographic variables on expected returns and risks at both medium and long investment horizons (Favero and Tamoni, 2010).

Two very different strategies have been proposed for generating multiperiod forecasts. The first approach is to estimate a dynamic model for data observed at the highest available frequency, e.g. monthly, and then use the chain rule to generate forecasts at longer horizons. Under this iterated or indirect approach, the model specification is the same across all forecast horizons; only the number of iterations changes with the horizon. Univariate ARMA models or their multivariate VARMA equivalent, are usually used in the iterations. The second approach is to estimate a separate model for each forecast horizon, regressing future realizations on current information. Such direct forecasts dispense with the need for forward iteration. Under this approach, both the model specification and estimates can vary across different forecast horizons.

Both approaches have advantages and drawbacks. For a given model specification the iterated approach leads to more efficient parameter estimates since it includes data recorded at the highest available frequency and so uses the largest available sample size. If the model is misspecified, due, for example, to an omitted variable or because of an incorrect lag order, iterating the model multiple steps ahead can either attenuate or reduce existing biases. Direct forecasts are less efficient, but also more likely to be robust to model misspecification as they are typically linear projections of current realizations on past data. Direct forecasts introduce new problems, however, due to the overlap in data when the forecast horizon exceeds a single period which affects the covariance of the forecast errors.

Given the importance of the horizon to many forecasting problems, it is not surprising that a substantial theoretical literature has considered the multi-step forecasting problem, including Bao (2007), Cox (1961), Brown and Mariano (1989), Clements and Hendry (1998), Findley (1983), Hoque, Magnus and Pesaran (1988), Ing (2003), Schorfheide (2005), and Ullah (2004), with Bhansali (1999) and Chevillon (2007) providing surveys. This literature has examined the bias-efficiency trade-off in the context of specific models such as stationary first-order or higher-order autoregressive models. Whether the direct or iterated approach can be expected to produce the best forecasts generally depends on the sample size, forecast horizon, the (unknown) un-
derlying data generating process and the methods used to select lag length for the forecasting models (Ing, 2003). In general, no approach can be shown to uniformly dominate the other so, as pointed out by Marcellino, Stock and Watson (2006) (MSW, henceforth), the relative merit of the iterated versus direct forecast methods could vary across different economic variables and so is ultimately an empirical question.

For multivariate forecast models additional issues complicate the comparison of the direct and iterated forecast approaches. First, it becomes important how the potentially high-dimensional variable selection search is conducted and, by extension, how multi-step forecasts of any additional predictor variables are generated under the iterated approach. For multivariate specifications of even modest dimension, a global model specification search very rapidly becomes intractable unless the problem is further constrained. With d potential regressors, there are 2^{d} different linear models and with d easily in the hundreds it is infeasible to evaluate every possible model. To deal with this dimensionality problem, we propose a factor-augmented VAR approach to iterated forecasting that builds on the work by Bernanke, Boivin and Eliasz (2005) and Stock and Watson (2005). This limits the model specification search to consider inclusion of only a few common factors extracted from different categories of economic variables. In addition to past values of the predicted variable itself, relatively few potential predictors therefore need to be considered.

A second issue that has not previously received much attention in this context is the serial correlation in the errors of the direct forecast models, which arises due to the use of overlapping data. This raises issues at both the estimation and model selection stages. In the estimation stage we propose a SURE estimation approach that reorganizes the data in non-overlapping blocks of observations spaced apart by the length of the forecast horizon. We show how to compute the resulting covariance matrix under this approach which holds the potential of efficiency gains over conventional direct forecasts. In the model selection stage we propose modifications to the Akaike information criterion that account for serial correlation in residuals from the forecast models. Monte Carlo simulations confirm that the modifications to the AIC and the SURE estimation approach both lead to improvements in the performance of the direct forecast models.

In an empirical exercise we consider the 170 variables studied by MSW. We confirm their finding that the iterated forecasts are best overall among the univariate forecasting methods, particularly at long horizons where the inefficiency of the direct forecasting method is most prominent. Furthermore, we find that forecasts generated by factor-augmented VARs generally perform better than the univariate forecasts, an important exception being variables tracking prices and wages. This suggests that it is helpful to extend the forecasting models beyond purely univariate schemes and include the multivariate information embedded in common factors. Among the direct
forecasts, in the majority of cases the modified Akaike information criteria and the SURE approach both help improve forecasting performance.

In summary, the main contributions of the paper are as follows: First, we propose a factor-augmented forecast approach that extends univariate iterated methods to the multivariate setting. Second, we propose a new SURE estimation method that accounts for the data overlap that arises at multiperiod horizons under the direct forecast approach. Third, we extend the AIC to account for the overlap introduced by the direct forecasting method which affects the covariance of the forecast errors and so can lead to different models being chosen in small samples. Fourth, we study the forecasting performance of both extant and new estimation, model selection, and forecasting methods through Monte Carlo simulations. Finally, we present an empirical application that considers recursively generated forecasts of the economic variables included in the study by MSW and extends their study to a multivariate setting.

The outline of the paper is as follows. Section 2 sets up the multi-period forecasting problem for univariate and multivariate cases, while Section 3 deals with model selection and estimation issues. Section 4 presents Monte Carlo results, while Section 5 describes our empirical findings using the Marcellino et al. data set. Section 6 concludes.

2 Methods for Multi-period Forecasting

Suppose a forecaster is interested in predicting a $K \times 1$ vector of variables $\boldsymbol{y}_{t+h}=\left(y_{1, t+h}, y_{2, t+h}, \ldots, y_{K, t+h}\right)^{\prime}$ by means of their own past values and the past values of an additional set of M potentially relevant predictor variables, $\mathbf{x}_{t}=\left(x_{1 t}, x_{2 t}, \ldots, x_{M t}\right)^{\prime}$. Typically K is small, often one or two, but M could be very large.

The forecaster's horizon, h, could be a single period, $h=1$, or could involve several periods, $h>1$. Iterated forecasts use a single model fitted to the shortest horizon and then iterate on this model to obtain multi-step forecasts. Direct forecasts regress realizations h periods into the future on current information and, therefore, estimate and select a separate forecasting model for each horizon.

For purposes of calculating one-step-ahead forecasts under the iterated approach, the regressors are treated as conditional information and so how they are generated is not a concern. This also holds under the direct forecasting approach irrespective of the forecast horizon. In contrast, when applying the iterated forecasting approach to multi-period horizons, $h>1$, the regressors themselves need to be predicted since such values in turn are required to predict future values of \boldsymbol{y}_{t}. We next show how this can be done using factor-augmented VAR models.

2.1 Multi-step Forecasts with Factor-Augmented VARs

In cases where M is relatively small one approach is to treat all variables simultaneously, i.e., model $\left(\boldsymbol{y}_{t}^{\prime}, \boldsymbol{x}_{t}^{\prime}\right)^{\prime}$ jointly. Multi-period forecasts of \mathbf{y}_{t} can then be obtained by iterating on a VAR of the form

$$
\begin{equation*}
\binom{\mathbf{y}_{t}}{\mathbf{x}_{t}}=\binom{\boldsymbol{\mu}_{y}}{\boldsymbol{\mu}_{x}}+\boldsymbol{\Lambda}(L)\binom{\mathbf{y}_{t-1}}{\mathbf{x}_{t-1}}+\boldsymbol{\psi}_{t} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\Lambda}(L)$ is a matrix lag polynomial of finite order. In the common situation where M is large while the time-series dimension of the data is limited, this approach is unlikely to be successful due to the high dimension of $\boldsymbol{\Lambda}(L)$, particularly the parts tracking dynamics in the large-dimensional vector \mathbf{x}_{t}.

To deal with this issue, a conditional factor-augmentation approach can be used. Under this approach, the large-dimensional \boldsymbol{x}_{t}-vector is condensed into a subset of factors, \boldsymbol{f}_{t}, of dimension $m<M$, that summarize the salient features of the large-dimensional data. A factor-augmented VAR (FAVAR) based on the variables $\boldsymbol{z}_{t}=\left(\boldsymbol{y}_{t}^{\prime}, \boldsymbol{f}_{t}^{\prime}\right)^{\prime}$ can then be used:

$$
\boldsymbol{z}_{t}=\boldsymbol{\mu}_{z}+\left(\begin{array}{cc}
\boldsymbol{A}_{p}(L) & \boldsymbol{B}_{q}(L) \tag{2}\\
\mathbf{0} & \boldsymbol{D}_{s}(L)
\end{array}\right) \boldsymbol{z}_{t-1}+\boldsymbol{\xi}_{t},
$$

where the finite-order matrix lag polynomials are

$$
\begin{aligned}
\boldsymbol{A}_{p}(L) & =\boldsymbol{A}_{0}+\mathbf{A}_{1} L \ldots+\boldsymbol{A}_{p-1} L^{p-1} \\
\boldsymbol{B}_{q}(L) & =\boldsymbol{B}_{0}+\mathbf{B}_{1} L+\ldots+\boldsymbol{B}_{q-1} L^{q-1} \\
\boldsymbol{D}_{s}(L) & =\boldsymbol{D}_{0}+\mathbf{D}_{1} L+\ldots+\boldsymbol{D}_{s-1} L^{s-1}
\end{aligned}
$$

Notice the asymmetric treatment of \boldsymbol{y}_{t} and \boldsymbol{f}_{t} under this approach: future values of the factors are generated using only current and past values of the factors themselves. The y-variables are therefore not used to predict the factors, while the factors are used to predict the y-variables.

For illustration, suppose that the $K \times 1$ vector of target variables, \boldsymbol{y}_{t}, is generated according to the following factor model

$$
\begin{align*}
& \boldsymbol{y}_{t}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{y}_{t-1}+\boldsymbol{B} \boldsymbol{f}_{t-1}+\boldsymbol{u}_{t}, \quad t=1,2, \ldots, T, \tag{3}\\
& \boldsymbol{u}_{t} \sim \operatorname{iid}(\mathbf{0}, \boldsymbol{\Sigma}),
\end{align*}
$$

where \boldsymbol{f}_{t} is a vector of unobserved common factors, while $\boldsymbol{\mu}, \boldsymbol{A}, \boldsymbol{B}$, and $\boldsymbol{\Sigma}$ are unknown coefficient matrices.

Using this model to predict \boldsymbol{y}_{t+h} given information at time t requires a forecast of the factors whenever $h \geq 2$. Despite the dynamic nature of the above model, we follow Stock and Watson (2002) and estimate \boldsymbol{f}_{t} by the principal component (PC) procedure, although one could equally employ the dynamic factor approach of Forni et al. (2005). A key question when using
factor models is the choice of the number of factors. This can be determined, for example, by using the information criteria (IC) proposed by Bai and Ng (2002). In practice there is considerable uncertainty surrounding the number of factors to be used, and as pointed out by Bai and Ng (2009), the use of IC is based on the assumption that the factors are ordered as predictors of the regressors \mathbf{x}_{t}, an ordering that might not be appropriate for predicting \mathbf{y}_{t}.

In view of these concerns we adopt a hierarchical approach where we first divide all variables into economically distinct groups and then select the first PC from each of the categories. All the computations are carried out recursively with rolling estimation windows of length w, so no future information is used in the construction of the factors. We denote the recursively estimated PCs by $\hat{\boldsymbol{f}}_{t}, t=R, R+1, \ldots, T-h$, where t is the point in time where the factors are computed, $R \geq w$ is the time at which the first forecast is made, and T is the total sample length. Hence, at time t we use data over the sample $t-w+1, t-w+2, \ldots, t$ to extract $\hat{\boldsymbol{f}}_{t}$.

Only those factors that help predict \boldsymbol{y}_{t} are relevant and should be included in the model. This may be a subset, $\hat{\boldsymbol{f}}_{1 t}$, of the full set of factors, $\hat{\boldsymbol{f}}_{t}$, under consideration. One then has to choose whether to use the full set of factors $\hat{\boldsymbol{f}}_{t}=\left(\hat{\boldsymbol{f}}_{1 t}, \hat{\boldsymbol{f}}_{2 t}\right)$ to predict the subset of factors, $\hat{\boldsymbol{f}}_{1 t}$, selected when forecasting \boldsymbol{y}_{t+h}, or whether to use only lagged values of $\hat{\boldsymbol{f}}_{1 t}$ to predict their future values. The choice could depend on the number of available factors. In the empirical application below where we consider five factors we use all factors to forecast future values of $\hat{\boldsymbol{f}}_{1 t}$.

To generate iterated multivariate forecasts we first select the relevant subset of factors and the lag lengths p and q using the conditional model:

$$
\begin{equation*}
\boldsymbol{y}_{t}=\boldsymbol{\mu}_{y}+\boldsymbol{A}_{p}(L) \boldsymbol{y}_{t-1}+\boldsymbol{B}_{q}(L) \hat{\boldsymbol{f}}_{t-1}+\boldsymbol{u}_{t} \tag{4}
\end{equation*}
$$

We determine the lag orders p and q and the subset of m_{1} factors from the total set of m factors by applying IC to the likelihood of \boldsymbol{y}_{t}.

For simplicity, we obtain forecasts only from the full set of $m=m_{1}+m_{2}$ factors. Hence we first select a $\operatorname{VAR}(s)$ model in $\hat{\boldsymbol{f}}_{t}$ where the value of s is determined by some IC, again applied recursively:

$$
\begin{equation*}
\hat{\boldsymbol{f}}_{t}=\boldsymbol{\mu}_{f}+\boldsymbol{D}_{s}(L) \hat{\boldsymbol{f}}_{t-1}+\varepsilon_{t} . \tag{5}
\end{equation*}
$$

Next, to compute iterated h-step-ahead forecasts of \boldsymbol{y}_{t}, we simply combine the conditional and marginal models:

$$
\begin{aligned}
\boldsymbol{y}_{t} & =\boldsymbol{\mu}_{y}+\boldsymbol{A}_{p}(L) \boldsymbol{y}_{t-1}+\boldsymbol{B}_{q}(L) \hat{\boldsymbol{f}}_{t-1}+\boldsymbol{u}_{t} \\
\hat{\boldsymbol{f}}_{t} & =\boldsymbol{\mu}_{f}+\boldsymbol{D}_{s}(L) \hat{\boldsymbol{f}}_{t-1}+\boldsymbol{\nu}_{t}
\end{aligned}
$$

which, recalling that $\boldsymbol{z}_{t}=\left(\boldsymbol{y}_{t}^{\prime}, \hat{\boldsymbol{f}}_{t}^{\prime}\right)^{\prime}$ and $\boldsymbol{\xi}_{t}=\left(\boldsymbol{u}_{t}^{\prime}, \boldsymbol{\nu}_{t}^{\prime}\right)^{\prime}$, is consistent with Eq. (2). Notice that the selection of factors in the conditional model (4) is
reflected in zero-restrictions on $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{q}$, where the columns corresponding to the factors that are not selected are set to zeros. The factoraugmented VAR in \boldsymbol{z}_{t} can then readily be iterated forward. ${ }^{1}$

Direct h-step-ahead forecasts of y_{t} are based on the following specification:

$$
\boldsymbol{y}_{t}=\boldsymbol{\mu}_{y h}+\boldsymbol{A}_{p h}(L) \boldsymbol{y}_{t-h}+\boldsymbol{B}_{q h}(L) \hat{\boldsymbol{f}}_{t-h}+\boldsymbol{u}_{t h}
$$

Univariate forecasts arise as a special case of these multivariate forecasts.

3 Estimation and Model Selection

Two important econometric issues arise in the context of multi-period forecasting. First, the direct forecast models introduce overlaps in the observations and give rise to a particular dependence structure which, if imposed on the estimation, could lead to efficiency gains. Second, for both iterative and direct forecasts, how a particular model is chosen by the forecaster is of great importance given the large dimension of the set of potentially relevant predictor variables. In this section we discuss both issues, first presenting a new SURE estimation procedure that may lead to efficiency gains and next considering a variety of information criteria, including modified ones that deal with serial dependence in the errors.

3.1 Estimation

Overlaps in the data associated with the direct forecast models introduce serial dependence in the errors. Even if the underlying errors are serially uncorrelated, the errors associated with an h-period overlap typically follow an MA $(h-1)$ process. This suggests that estimating VARMA models could be beneficial. We do not follow this direction for two reasons. First, estimation of VARMA models is not a very common undertaking in the forecasting literature and thus goes against our focus on evaluating forecasting methods in common use. Second, VARMA models have stability and convergence problems for the types of multivariate models considered in our paper, which can be of large dimension, and require extensive specification searches; see Athanasopoulos and Vahid (2008) for further discussion of these points.

Instead, we propose using SURE estimation which leads to some efficiency gains as it exploits the information of the MA structure of the error even if it implies a more heavily parameterized model. Consider estimation of the following direct forecast model

$$
\begin{equation*}
y_{t}=\boldsymbol{\beta}^{\prime} \mathbf{z}_{t-h}+u_{t}, t=1,2, \ldots, T \tag{6}
\end{equation*}
$$

[^1]and suppose that u_{t} follows an $(h-1)$ order moving average process
\[

$$
\begin{equation*}
u_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{h-1} \varepsilon_{t-h+1}, \quad \varepsilon_{t} \sim i i d\left(0, \sigma^{2}\right) \tag{7}
\end{equation*}
$$

\]

The regressors, \mathbf{z}_{t-h}, include $y_{t-h}, y_{t-h-1}, \ldots, y_{t-h-p}$ for some order p, and estimated factors dated $t-h$ or earlier, i.e. $\hat{\boldsymbol{f}}_{t-h}, \ldots, \hat{\boldsymbol{f}}_{t-h-q}$.

When the direct regression is derived from an underlying VAR in y_{t} and $\hat{\boldsymbol{f}}_{t}$ the regression coefficients, $\boldsymbol{\beta}$, and the MA coefficients $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{h-1}\right)^{\prime}$ are related, and fully efficient estimation of Eq. (6) must allow for such cross-parameter restrictions. This type of restrictions can be implemented by assuming that $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$ are both functions of a set of deeper parameters, ϕ, with estimation of $\boldsymbol{\beta}(\boldsymbol{\phi})$ and $\boldsymbol{\theta}(\boldsymbol{\phi})$ carried out directly in terms of ϕ. Imposing such restrictions on the system of direct forecasting models simply helps recover the original parameter values from the iterated forecasting model. Since the latter efficiently uses data at the highest frequency, maximum likelihood estimates from joint estimation of the mutually consistent h-step direct forecasting models is identical to estimation of the parameter estimates from the one-step-ahead model, which of course is far more easily achieved. In scenarios where the direct forecast would dominate the iterated forecast, e.g., because the forecasting model is misspecified, using the parameters of the iterated forecast model for the covariance matrix may be undesirable. As for the model parameters, it may therefore be better to estimate the covariance matrix directly without imposing the parameter restrictions on the iterated forecast.

Asymptotically efficient estimates of $\boldsymbol{\beta}$ can be computed by applying maximum likelihood directly to the overlapping regressions for $t=1,2, \ldots, T$, allowing for the $\mathrm{MA}(h-1)$ process of the errors. Alternatively, one could consider estimating $\boldsymbol{\beta}$ from pooled regressions of h non-overlapping regressions. Suppose that the estimation sample, w, is an exact multiple of h and set $n=w / h$. Let $\tilde{z}_{i j}=y_{t-w+j+(i-1) h}$ and decompose the overlapping regressions in Eq. (6) into the following h non-overlapping regressions

$$
\begin{equation*}
\tilde{z}_{i j}=\boldsymbol{\beta}^{\prime} \mathbf{w}_{i-1, j}+v_{i j}, \text { for } i=1,2, \ldots, n, \text { and } j=1,2, \ldots, h, \tag{8}
\end{equation*}
$$

where $\mathbf{w}_{i-1, j}=\mathbf{z}_{t-w+j+(i-1) h-h}$, and $v_{i j}=u_{t-w+j+(i-1) h}$. When $h=2$, we have two non-overlapping regressions: one for the odd observations, $\tilde{z}_{i 1}$, and another for the even observations, $\tilde{z}_{i 2}$, for $i=1,2, \ldots, n$.

For each j the errors $v_{i j}$ are serially uncorrelated across i and the least squares regression of $\tilde{\mathbf{z}}_{j}=\left(\tilde{z}_{1 j}, \tilde{z}_{2 j}, \ldots, \tilde{z}_{n j}\right)^{\prime}$ on $\mathbf{W}_{j}=\left(\mathbf{w}_{0 j}, \mathbf{w}_{1 j}, \ldots, \mathbf{w}_{n-1, j}\right)^{\prime}$ yields a consistent estimate of $\boldsymbol{\beta}$ which we denote by $\hat{\boldsymbol{\beta}}_{j}$. However, this estimate is not efficient and a pooled estimate that utilizes all the h nonoverlapping regressions can be more efficient. The estimates across the h non-overlapping regressions can be pooled in a number of ways, e.g., with a simple or a weighted average of $\hat{\boldsymbol{\beta}}_{j}$, over $j=1,2, \ldots, h$, with weights based on the relative precision of the different estimates.

Alternatively, the h regressions in Eq. (8) can be viewed as a set of seemingly unrelated regression equations (SURE), allowing for the cross dependence of the errors $v_{i j}$ across j for each i. Specifically, consider the regressions

$$
\begin{equation*}
\tilde{\mathbf{z}}_{j}=\mathbf{W}_{j} \boldsymbol{\beta}+\mathbf{v}_{j}, \text { for } j=1,2, \ldots, h \tag{9}
\end{equation*}
$$

which in stacked form can be written as

$$
\tilde{\mathbf{z}}=\mathbf{W} \boldsymbol{\beta}+\mathbf{v}
$$

where $\tilde{\mathbf{z}}=\left(\tilde{\mathbf{z}}_{1}^{\prime}, \tilde{\mathbf{z}}_{2}^{\prime}, \ldots, \tilde{\mathbf{z}}_{h}^{\prime}\right)^{\prime}, \mathbf{W}=\left(\mathbf{W}_{1}^{\prime}, \mathbf{W}_{2}^{\prime}, \ldots, \mathbf{W}_{h}^{\prime}\right)^{\prime}$, and $\mathbf{v}=\left(\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{h}^{\prime}\right)^{\prime}$. To derive the covariance matrix of \mathbf{v} we first note that $\mathbf{v}_{j}=\left(u_{t-w+j}, u_{t-w+j+h}\right.$, $\left.u_{t-w+j+2 h}, \ldots, u_{t-w+j+(n-1) h}\right)^{\prime}$, and denote the autocovariance of $\left\{u_{t}\right\}$, which follows an MA $(h-1)$ process, by $\gamma(s)$, where $\gamma(s)=\gamma(-s)=0$ for $s \geq h$. It is now easily seen that

$$
E\left(\mathbf{v}_{j} \mathbf{v}_{j}^{\prime}\right)=\gamma(0) \mathbf{I}_{n}
$$

where \mathbf{I}_{n} is an identity matrix of order n. Similarly, if $0<s-r<h$,

$$
\begin{gathered}
E\left(\mathbf{v}_{r} \mathbf{v}_{s}^{\prime}\right) \equiv \mathbf{\Psi}_{r s}= \\
\left(\begin{array}{cccccc}
\gamma(s-r) & 0 & 0 & \ldots & 0 & 0 \\
\gamma(h-s+r) & \gamma(s-r) & 0 & \cdots & 0 & 0 \\
0 & \gamma(h-s+r) & \gamma(s-r) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \gamma(h-s+r) & \gamma(s-r) & 0 \\
0 & 0 & \cdots & 0 & \gamma(h-s+r) & \gamma(s-r)
\end{array}\right),
\end{gathered}
$$

while if $0<r-s<h$,

$$
E\left(\mathbf{v}_{r} \mathbf{v}_{s}^{\prime}\right) \equiv \boldsymbol{\Psi}_{r s}=
$$

$$
\left(\begin{array}{cccccc}
\gamma(r-s) & \gamma(h-r+s) & 0 & \cdots & 0 & 0 \\
0 & \gamma(r-s) & \gamma(h-r+s) & \cdots & 0 & 0 \\
0 & 0 & \gamma(r-s) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \gamma(r-s) & \gamma(h-r+s) \\
0 & 0 & \cdots & 0 & 0 & \gamma(r-s)
\end{array}\right)
$$

Therefore, the covariance matrix of \mathbf{v} is given by

$$
\boldsymbol{\Sigma}_{v}(\boldsymbol{\theta})=\left(\begin{array}{ccccc}
\gamma(0) \mathbf{I}_{n} & \boldsymbol{\Psi}_{12} & \boldsymbol{\Psi}_{13} & \cdots & \boldsymbol{\Psi}_{1 h} \tag{10}\\
\boldsymbol{\Psi}_{21} & \gamma(0) \mathbf{I}_{n} & \boldsymbol{\Psi}_{23} & \cdots & \\
\vdots & \vdots & \vdots & & \\
\boldsymbol{\Psi}_{h-1,1} & \boldsymbol{\Psi}_{h-1,2} & \cdots & \gamma(0) \mathbf{I}_{n} & \boldsymbol{\Psi}_{h-1, h} \\
\boldsymbol{\Psi}_{h 1} & \boldsymbol{\Psi}_{h 2} & \cdots & \boldsymbol{\Psi}_{h, h-1} & \gamma(0) \mathbf{I}_{n}
\end{array}\right)
$$

The log-likelihood function of the SURE specification is now given by

$$
\begin{equation*}
\ell(\boldsymbol{\beta}, \boldsymbol{\theta}) \propto-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{v}(\boldsymbol{\theta})\right|-\frac{1}{2}(\tilde{\mathbf{z}}-\mathbf{W} \boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}_{v}^{-1}(\boldsymbol{\theta})(\tilde{\mathbf{z}}-\mathbf{W} \boldsymbol{\beta}) \tag{11}
\end{equation*}
$$

The unknown parameters can be obtained by maximization of the log-likelihood function:

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{\mathrm{SURE}}=\left[\mathbf{W}^{\prime} \boldsymbol{\Sigma}_{v}^{-1}(\boldsymbol{\theta}) \mathbf{W}\right]^{-1} \mathbf{W}^{\prime} \boldsymbol{\Sigma}_{v}^{-1}(\boldsymbol{\theta}) \tilde{\mathbf{z}} \tag{12}
\end{equation*}
$$

This maximum likelihood procedure is equivalent to the maximum likelihood estimation of the original overlapping regression in Eq. (6) with errors following the $\mathrm{MA}(h-1)$ process (7). To see this, let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{T}\right)^{\prime}$, and note that since the elements of \mathbf{z} are selected from the elements of \mathbf{y} without repetition, there exists a non-singular $T \times T$ selection matrix \mathbf{P} such that $\tilde{\mathbf{z}}=\mathbf{P y}$. Hence the log-likelihood functions based on \mathbf{y} and $\tilde{\mathbf{z}}$ must be the same, and the covariance matrix in Eq. (10) is equivalent to using a GLS covariance matrix after reordering the observations.

Maximum likelihood estimation of $\boldsymbol{\beta}$ under the SURE approach suggests intermediate procedures that are computationally less extensive and relatively easy to implement. One possible approach would be to estimate $\boldsymbol{\Sigma}_{v}(\boldsymbol{\theta})$ using consistent estimates of $\gamma(s)$ obtained from $\hat{u}_{t}=y_{t}-\hat{\boldsymbol{\beta}}_{\mathrm{LS}}^{\prime} \mathbf{z}_{t-h}$ where $\hat{\boldsymbol{\beta}}_{\mathrm{LS}}$ is the first-stage least squares estimate of $\boldsymbol{\beta}$ computed from the overlapping regressions. Hence ${ }^{2}$

$$
\begin{equation*}
\hat{\gamma}(s)=\frac{\sum_{t=1}^{T} \hat{u}_{t} \hat{u}_{t-s}}{T}, \text { for } s=0,1,2, \ldots, h \tag{13}
\end{equation*}
$$

Alternatively, we could apply the standard SURE estimation to Eq. (9) subject to the restrictions $\boldsymbol{\beta}_{j}=\boldsymbol{\beta}$ for all $j=1,2, \ldots, h$ and use the covariance matrix $\boldsymbol{\Sigma}_{h} \otimes \boldsymbol{I}_{T / h}$, where $\boldsymbol{\Sigma}_{h}$ is the covariance matrix of the SURE system (9) without accounting for the restrictions in Eq. (10). This procedure provides an efficient way of pooling the h different consistent estimates of $\boldsymbol{\beta}$ but does not take account of the specific form of the cross dependence of the errors from the different non-overlapping regressions. Monte Carlo experiments not reported here but available from the authors suggests that this leads to an inferior forecast performance and will therefore not be further considered.

In the Monte Carlo simulations and empirical analysis we use the first approach and the likelihood function in Eq. (11) to calculate the information criteria. $\gamma(s)$ is estimated using least squares residuals as in Eq. (13) and down-weighted by $\left(1-\frac{s}{h}\right)$. To robustify the calculation of the forecasts, one can use the SURE approach in the model selection stage, but then use OLS estimation for the selected model. Numbers reported in subsequent

[^2]tables are based on this combination, but results are very similar without this modification.

3.2 Model Selection

We consider two model selection criteria, namely the AIC and BIC. Both are commonly used in forecasting studies and have well known properties: AIC achieves a good approximate model as the sample size expands even if the true model is not contained in the set of models under consideration. However, it is not a consistent criterion and so does not select the true model with probability one, asymptotically, if it happens to be included in the search. In contrast, BIC is a consistent model selection criterion if the true model is one of the models under consideration.

The iterated and the direct forecast models can be selected either on the basis of single equations or using a system of equations. For the direct forecasting models an additional decision has to be made whether to correct for the overlap in the observations that affects the sample covariance matrix of the forecast errors.

3.2.1 Iterated Forecasts

Individual models in the specification search select different subsets of $\mathbf{z}_{t-1}=$ $\left(\mathbf{y}_{t-1}^{\prime}, \hat{\mathbf{f}}_{t-1}^{\prime}\right)^{\prime}$. We consider the following standard criteria. First, we apply AIC or BIC recursively to the single equation $(K=1)$ containing the variable of interest, i.e., at time t, for a particular model we have:

$$
\begin{align*}
\mathrm{AIC}_{t w} & =\ln \left[\hat{\boldsymbol{u}}_{t w}^{\prime} \hat{\boldsymbol{u}}_{t w} /(w-1)\right]+\frac{2 d}{w-1} \tag{14}\\
\mathrm{BIC}_{t w} & =\ln \left[\hat{\boldsymbol{u}}_{t w}^{\prime} \hat{\boldsymbol{u}}_{t w} /(w-1)\right]+\frac{d \ln (w-1)}{w-1}
\end{align*}
$$

where d is the dimension of the vector containing the subset of \mathbf{z}_{t-1} selected by the model under consideration, $\hat{\boldsymbol{u}}_{t w}^{\prime}$ is a $(w-1) \times 1$ vector of estimated residuals from the rolling-window estimation with typical element $\hat{u}_{\tau}=y_{1 \tau}-$ $\hat{\boldsymbol{\beta}}_{t}^{\prime} \mathbf{z}_{\tau-1}$, for $\tau=t-w+2, t-w+3, \ldots, t$, and $\hat{\boldsymbol{\beta}}_{t}$ is estimated using the most recent w observations up to period $t .^{3}$

Similarly, for $K>1$, we have

$$
\begin{align*}
\mathrm{AIC}_{t w} & =\ln \left|\hat{\boldsymbol{\Sigma}}_{t w}\right|+\frac{2 K d}{w-1} \tag{15}\\
\mathrm{BIC}_{t w} & =\ln \left|\hat{\boldsymbol{\Sigma}}_{t w}\right|+\frac{K d \ln (w-1)}{w-1}
\end{align*}
$$

[^3]where $\hat{\boldsymbol{\Sigma}}_{t w}$ is the $K \times K$ estimated error covariance matrix
$$
\hat{\boldsymbol{\Sigma}}_{t w}=\frac{1}{w-1}\left[\boldsymbol{Y}_{t w}^{\prime} \boldsymbol{Y}_{t w}-\boldsymbol{Y}_{t w}^{\prime} \boldsymbol{Z}_{t-1, w}\left(\boldsymbol{Z}_{t-1, w}^{\prime} \boldsymbol{Z}_{t-1, w}\right)^{-1} \mathbf{Z}_{t-1, w}^{\prime} \boldsymbol{Y}_{t w}\right]
$$
$\boldsymbol{Y}_{t w}$ is the $(w-1) \times K$ matrix of stacked $\boldsymbol{y}_{\tau}=\left(y_{1 \tau}, y_{2 \tau}, \ldots, y_{K \tau}\right)^{\prime}$, and $\boldsymbol{Z}_{t-1, w}$ is the observation matrix formed by stacking $\boldsymbol{z}_{t-1, w}$ over the $w-1$ observations indexed by $\tau=t-w+2, t-w+3, \ldots, t$. These are all standard expressions.

3.2.2 Direct Forecasts

The direct forecast models that are not based on the SURE system in Eq. (9) are selected based on either AIC or BIC

$$
\begin{align*}
\mathrm{AIC}_{t w h} & =\ln \left[\hat{\boldsymbol{u}}_{t w h}^{\prime} \hat{\boldsymbol{u}}_{t w h} /(w-h)\right]+\frac{2 d}{w-h} \\
\mathrm{BIC}_{t w h} & =\ln \left[\hat{\boldsymbol{u}}_{t w h}^{\prime} \hat{\boldsymbol{u}}_{t w h} /(w-h)\right]+\frac{d \ln (w-h)}{w-h} \tag{16}
\end{align*}
$$

where $\hat{\boldsymbol{u}}_{t w h}$ is a $(w-h) \times 1$ vector of estimated residuals with typical element $\hat{u}_{\tau}=y_{1 \tau}-\hat{\boldsymbol{\beta}}_{t}^{\prime} \boldsymbol{z}_{\tau-h}$, for $\tau=t-w+1+h, \ldots, t$, when $K=1$ or the equivalent of Eq. (15) when $K>1$. For $h>1$, the overlap in the forecasts will produce autocorrelation in the residuals. This should be accounted for in small samples when calculating the information criteria. Here we consider two ways to calculate the corrections for the case where $K=1$.

To motivate these, assume that the h-step forecast model takes the form in Eq. (6) estimated using the observations $\tau=t-w+1, t-w+2, \ldots, t$, and denote the least squares criterion for estimating β by

$$
Q(\boldsymbol{\beta})=\frac{1}{2 \sigma_{u}^{2}}\left(\boldsymbol{y}_{t w h}-\boldsymbol{Z}_{t w h} \boldsymbol{\beta}\right)^{\prime}\left(\boldsymbol{y}_{t w h}-\boldsymbol{Z}_{t w h} \boldsymbol{\beta}\right)
$$

where $\sigma_{u}^{2}=\operatorname{Var}\left(u_{t}\right), \boldsymbol{y}_{t w h}=\left(y_{t-w+1+h}, \ldots, y_{t}\right)^{\prime}$, and $\boldsymbol{Z}_{t w h}=\left(\boldsymbol{z}_{t-w+1}, \ldots, \boldsymbol{z}_{t-h}\right)^{\prime}$. Let $Q_{0}(\boldsymbol{\beta})=\mathrm{E}[Q(\boldsymbol{\beta})]$, where expectations are taken conditional on $\boldsymbol{Z}_{t w h}$ and with respect to the true conditional density of $\mathbf{y}_{t w h}$, and denote the $j^{\text {th }}$ derivative of $Q(\boldsymbol{\beta})$ by $Q^{(j)}(\boldsymbol{\beta})$. Moreover, let $\boldsymbol{\beta}_{0}$ be the true value of β, and its estimate given by $\hat{\boldsymbol{\beta}}=\arg \min _{\beta}[Q(\boldsymbol{\beta})]$. Using these notations, we have that $Q_{0}^{(1)}\left(\boldsymbol{\beta}_{0}\right)=0, Q^{(1)}(\hat{\boldsymbol{\beta}})=0, Q^{(2)}(\boldsymbol{\beta})=Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)=\frac{1}{\sigma_{u}^{2}} \boldsymbol{Z}_{t w h}^{\prime} \boldsymbol{Z}_{t w h}$.

Define $Q_{0}(\hat{\boldsymbol{\beta}})$ as the loss incurred by using the estimated parameter $\hat{\boldsymbol{\beta}}$ instead of the unknown true parameter, $\boldsymbol{\beta}_{0}$. Note that $Q_{0}(\hat{\boldsymbol{\beta}})$ is obtained by replacing β in $Q_{0}(\boldsymbol{\beta})$ with $\hat{\boldsymbol{\beta}}$. It is easily verified that because the operations of taking expectations and replacing an unknown parameter with its estimator do not commute, in general, $\mathrm{E}\left[Q_{0}(\hat{\boldsymbol{\beta}})\right] \neq \mathrm{E}[Q(\widehat{\boldsymbol{\beta}})]$.

Consider the following second order Taylor expansions

$$
\begin{aligned}
Q_{0}(\hat{\boldsymbol{\beta}}) & =Q_{0}\left(\boldsymbol{\beta}_{0}\right)+\frac{1}{2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \\
Q(\hat{\boldsymbol{\beta}}) & =Q\left(\boldsymbol{\beta}_{0}\right)+\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)+\frac{1}{2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) .
\end{aligned}
$$

These expressions are exact for the quadratic loss function considered here for convenience, but can be seen to hold approximately for a general loglikelihood specifications remainder terms being of lower orders in t, under certain standard regularity conditions. Taking expectations of these two equation yields

$$
\mathrm{E}\left[Q_{0}(\hat{\boldsymbol{\beta}})\right]=Q_{0}\left(\boldsymbol{\beta}_{0}\right)+\frac{1}{2} \mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right],
$$

and

$$
\begin{aligned}
\mathrm{E}[Q(\hat{\boldsymbol{\beta}})] & =\mathrm{E}\left[Q\left(\boldsymbol{\beta}_{0}\right)\right]+\mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)\right]+\frac{1}{2} \mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right] \\
& =Q_{0}\left(\boldsymbol{\beta}_{0}\right)+\mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)\right]+\frac{1}{2} \mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q_{0}^{(2)}\left(\boldsymbol{\beta}_{0}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right]
\end{aligned}
$$

Therefore

$$
\mathrm{E}\left[Q_{0}(\hat{\boldsymbol{\beta}})-Q(\hat{\boldsymbol{\beta}})\right]=-\mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)\right]
$$

Furthermore

$$
\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)=-\left[Q^{(2)}\left(\boldsymbol{\beta}_{0}\right)\right]^{-1} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)
$$

and hence (for a given set of regressors)

$$
\begin{aligned}
-\mathrm{E}\left[\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} Q^{(1)}\left(\boldsymbol{\beta}_{0}\right)\right] & =\mathrm{E}\left[\operatorname{tr}\left(\sigma_{u}^{-2} \boldsymbol{u}_{t w h}^{\prime} \boldsymbol{Z}_{t w h}\left(\boldsymbol{Z}_{t w h}^{\prime} \boldsymbol{Z}_{t w h}\right)^{-1} \boldsymbol{Z}_{t w h} \boldsymbol{u}_{t w h}\right)\right] \\
& =\operatorname{tr}\left[\sigma_{u}^{-2}\left(\boldsymbol{Z}_{t w h}^{\prime} \boldsymbol{Z}_{t w h}\right)^{-1} \boldsymbol{Z}_{t w h}^{\prime} \mathrm{E}\left(\boldsymbol{u}_{t w h} \boldsymbol{u}_{t w h}^{\prime}\right) \boldsymbol{Z}_{t w h}\right],
\end{aligned}
$$

where $\boldsymbol{u}_{t w h}=\left(u_{t-w+1+h}, \ldots, u_{t}\right)^{\prime}$. If the errors $\boldsymbol{u}_{t w h}$ were $i i d$, this would give the standard penalty term K. However, for overlapping forecasts the errors will be autocorrelated and the expression will not collapse to K in small samples.

Building on this result, we first consider a band diagonal modified AIC that takes the form

$$
\begin{equation*}
\mathrm{AIC}_{\hat{\Pi}_{S}}=\ln \left[\hat{\boldsymbol{u}}_{t w h}^{\prime} \hat{\boldsymbol{u}}_{t w h} /(w-h)\right]+\frac{2 \operatorname{tr}\left(\hat{\boldsymbol{\Pi}}_{S}\right)}{w-h}, \tag{17}
\end{equation*}
$$

where

$$
\hat{\boldsymbol{\Pi}}_{S}=\left(\boldsymbol{Z}_{t w h}^{\prime} \boldsymbol{Z}_{t w h}\right)^{-1} \boldsymbol{Z}_{t w h}^{\prime} \boldsymbol{S}_{h} \boldsymbol{Z}_{t h} / h
$$

\boldsymbol{S}_{h} is a matrix with h on the diagonal, $h-1$ on the first diagonal above and below the main diagonal, $h-2$ on the second diagonal above and below the main diagonal etc., i.e.

$$
\boldsymbol{S}_{h}=\left(\begin{array}{llllll}
h & h-1 & h-2 & \cdots & & 0 \\
h-1 & h & h-1 & & \cdots & 0 \\
h-2 & h-1 & 1 & & & \vdots \\
\vdots & & & \ddots & h-1 & h-2 \\
0 & \cdots & & h-1 & h & h-1 \\
0 & \cdots & & h-2 & h-1 & h
\end{array}\right)
$$

This formulation aims at capturing the $\mathrm{MA}(h-1)$ form of the error process in the overlapping regressions but assumes that the serial correlation in the underlying (non-overlapping) observations is negligible.

The second approach uses an estimated covariance matrix. In particular, we use the Newey-West (1987) covariance matrix to obtain the correction. This yields the modified AIC:

$$
\begin{equation*}
\operatorname{AIC}_{\tilde{\Pi}}=\ln \left[\hat{\boldsymbol{u}}_{t w h}^{\prime} \hat{\boldsymbol{u}}_{t w h} /(w-h)\right]+\frac{2 \operatorname{tr}(\tilde{\boldsymbol{\Pi}})}{w-h}, \tag{18}
\end{equation*}
$$

where $\tilde{\boldsymbol{\Pi}}=\hat{\boldsymbol{\Sigma}}_{z z}^{-1} \hat{\boldsymbol{\Omega}}, \hat{\boldsymbol{\Sigma}}_{z z}=\hat{\sigma}_{u}^{2}\left(\frac{\boldsymbol{Z}_{\underline{t w h}}^{\prime} \mathbf{Z}_{t w h}}{w-h}\right), \hat{\boldsymbol{\Omega}}$ is the long-run variance of the residuals as estimated by the Newey-West covariance matrix with the bandwidth set to $\min \left(h, w^{1 / 3}\right)$.

When selecting the models based on the SURE system in Eq. (9), standard formulations of AIC and BIC with likelihood (11) can be used. The unknown parameters of the covariance matrix need not be included in the penalty term because models are compared only for the same forecast horizon, so the number of parameters in the covariance matrix will be the same across models.

Schorfheide (2005) proposes a related selection criterion based on the weighted sum of mean squared prediction errors adjusted for a term that penalizes for estimation inefficiencies resulting from high dimensional forecasting models. Although Schorfheide's criterion is closely related to the AIC, the penalty term in his approach captures prediction risk and is different from the penalty term used here.

4 Monte Carlo Simulations

We next turn to Monte Carlo simulations as a means to evaluate the performance of the various model selection and estimation approaches under two data generating processes (DGPs). For both DGPs we consider situations
with a single target variable, $K=1$, and m factors which yields the following VAR model for $\boldsymbol{z}_{t}=\left(y_{1 t}, f_{1 t}, \ldots, f_{m t}\right)^{\prime}$:

$$
\binom{y_{1 t}^{(b)}}{\boldsymbol{f}_{t}^{(b)}}=\left(\begin{array}{cc}
\alpha \rho & \alpha \boldsymbol{\gamma}^{\prime} \tag{19}\\
\mathbf{0} & \mathbf{A}
\end{array}\right)\binom{y_{1, t-1}^{(b)}}{\boldsymbol{f}_{t-1}^{(b)}}+\boldsymbol{\varepsilon}_{t}^{(b)}, \quad \varepsilon_{t}^{(b)} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{m+1}\right)
$$

Here $b=1,2, \ldots, B$ tracks the replications in the Monte Carlo experiments. We set $\boldsymbol{\Sigma}_{m+1}$ to a block-diagonal matrix, where the first block corresponds to the target variable and the second block to the $m \times m$ covariance matrix of the factors. The goodness of fit of the prediction equation (the first row of Eq. (19)) is controlled by the parameters $\alpha, \rho, \gamma, \mathbf{A}$ and $\boldsymbol{\Sigma}_{m+1}$. We set α such that the population R^{2} for $y_{1 t}$, denoted R_{y}^{2}, is either 0.2 or 0.8 , representing low and high predictability scenarios, respectively. Assuming that the eigenvalues of \mathbf{A} lie inside the unit circle, it is readily seen that $\operatorname{Cov}\left(\boldsymbol{f}_{t}^{(b)}\right)=\mathbf{I}_{m}$ provided that the part of the covariance matrix $\boldsymbol{\Sigma}_{m+1}$ that corresponds to the factors is set to ($\mathbf{I}_{m}-\mathbf{A} \mathbf{A}^{\prime}$). From Eq. (19) we see that

$$
R_{y}^{2}=\frac{\alpha^{2} \rho^{2}+\alpha^{2}\left(\gamma^{\prime} \gamma\right) / \sigma_{\varepsilon_{1}}^{2}}{1+\alpha^{2}\left(\gamma^{\prime} \gamma\right) / \sigma_{\varepsilon_{1}}^{2}}
$$

where $\sigma_{\varepsilon_{1}}^{2}$ is the variance of the innovation to $y_{1 t}$. For a given choice of R_{y}^{2}, ρ and γ we then have (setting $\sigma_{\varepsilon 1}^{2}=1$)

$$
\alpha^{2}=\frac{R_{y}^{2}}{\rho^{2}+\gamma^{\prime} \gamma\left(1-R_{y}^{2}\right)} .
$$

In practice, the factors are unobserved and forecasters will extract estimates of these from a panel of observed variables. We generate M_{j} variables for each factor $j, j=1,2, \ldots m$, in a hierarchical fashion, which corresponds to the estimation of the factors in the empirical analysis,

$$
x_{j i t}^{(b)}=\lambda_{j i} f_{j t}^{(b)}+\psi_{j i t}^{(b)}, \quad \psi_{j i t}^{(b)} \sim \mathrm{N}(0,1), \quad i=1,2, \ldots, M_{j}, \quad j=1,2, \ldots, m,
$$

where $M_{j}=30$ for all $j . \lambda_{j i}$ is set such that $R_{j x}^{2}=0.5$ in the low predictability scenario and 0.8 in the high predictability scenario:

$$
R_{j x}^{2}=\frac{\lambda_{j}^{\prime} \lambda_{j}}{1+\lambda_{j}^{\prime} \lambda_{j}}, j=1,2, \ldots, m
$$

where $\lambda_{j}=\left(\lambda_{j 1}, \lambda_{j 2}, \ldots, \lambda_{j M_{j}}\right)^{\prime}$.
Data are generated for window sizes of $w=60,120$, and 240 observations which in turn are used to compute forecasts for period $w+h$. We consider forecast horizons of $h=1,3,6,12$, and 24 periods.

Data Generating Process 1

The first DGP assumes that all variables contain useful information for predicting the variable of interest (always the first variable) and so the one-step-ahead forecast should select all variables. Moreover, we set $m=2$ and choose the remaining parameters as follows

$$
\mathbf{C} \equiv\left(\begin{array}{ll}
\rho & \gamma^{\prime} \\
\mathbf{0} & \mathbf{A}
\end{array}\right)=\left(\begin{array}{ccc}
0.8 & 0.5 & 0.5 \\
0 & 0.5 & 0 \\
0 & 0 & 0.8
\end{array}\right)
$$

so that both f_{1} and f_{2} help predict y_{1}, but f_{1} and f_{2} are in turn not themselves predictable by means of past values of y_{1}. Moreover, f_{2} is quite persistent while f_{1} is not, suggesting that for large values of h, f_{2} should play more of a role in forecasting y_{1} than f_{1}.

Data Generating Process 2

Under the second DGP, iterated multi-step forecasts can be expected to be inefficient because they select models that produce good one-step-ahead forecasts and factors in the DGP are only helpful for longer horizon forecasts. Specifically, the parameters for the second DGP are set to $m=3$ and

$$
\mathbf{C} \equiv\left(\begin{array}{ll}
\rho & \gamma^{\prime} \\
\mathbf{0} & \mathbf{A}
\end{array}\right)=\left(\begin{array}{cccc}
0.1 & 0.5 & 0 & 0 \\
0 & 0.2 & 0.6 & 0 \\
0 & 0 & 0.2 & 0.6 \\
0 & 0 & 0 & 0.75
\end{array}\right)
$$

Notice that f_{1} helps predict y_{1}, but f_{1} is in turn not itself predictable by means of past values of y_{1}. Moreover, f_{2} neither predicts nor is predicted by y_{1} but f_{2} predicts f_{1} and therefore may help predict y_{1} over medium horizons. Finally, the most persistent factor, f_{3}, indirectly helps predict y_{1} through its ability to predict f_{2}.

4.1 Forecasts

We generate forecasts from both univariate and multivariate models. The univariate forecasts are based on AR models with lag length up to $p_{\max }=$ 12. The multivariate models consider all regressors in the DGPs with the maximum lag length restricted to $p_{\max }=2$.

In each case forecasts are based on the model selected by one of the criteria discussed in the previous section. Iterated forecasts are then calculated as follows:

$$
\begin{equation*}
\hat{\boldsymbol{Z}}_{t+h \mid t}^{(b) *}=\left[\boldsymbol{I}_{m+1}+\hat{\mathbf{C}}^{(b)}+\cdots+\left[\hat{\mathbf{C}}^{(b)}\right]^{h-1}\right] \hat{\boldsymbol{\mu}}+\left[\hat{\mathbf{C}}^{(b)}\right]^{h} \boldsymbol{Z}_{t}^{(b) *} \tag{20}
\end{equation*}
$$

where $\boldsymbol{Z}_{t}^{(b) *}=\boldsymbol{z}_{t}^{(b) *}$ if $\boldsymbol{z}_{t}^{(b) *}$ includes $y_{1 t}^{(b)}$ or $\boldsymbol{Z}_{t}^{(b) *}=\left(y_{1 t}^{(b)}, \boldsymbol{z}_{t}^{(b) *}\right)$ if $\boldsymbol{z}_{t}^{(b) *}$ does not include $y_{1 t}^{(b)} . \boldsymbol{z}_{t}^{(b) *}$ is the subset of $\boldsymbol{z}_{t}^{(b)}$ chosen in the model selection procedure, $\boldsymbol{z}_{t}^{(b)}=\left(y_{1 t}^{(b)}, \hat{f}_{1 t}^{(b)}, \hat{f}_{2 t}^{(b)}, \ldots, \hat{f}_{m t}^{(b)}\right)$, and $\hat{f}_{j t}^{(b)}$ is the first principal component extracted from the set of M_{j} regressors, $x_{j i t}^{(b)}, i=1,2, \ldots, M_{j} . \hat{\mathbf{C}}^{(b)}$ is the estimate of \mathbf{C} defined above for the $b^{t h}$ Monte Carlo replication. The iterated h-step ahead forecast of $y_{1 t}^{(b)}$ is denoted by $\hat{y}_{1, t+h \mid t}^{(b)}$.

Direct forecasts are obtained from

$$
\begin{equation*}
\tilde{y}_{1, t+h \mid t}^{(b)}=\hat{\mu}_{h}+\hat{\boldsymbol{\beta}}_{h}^{\prime} \boldsymbol{z}_{h t}^{(b) *} \tag{21}
\end{equation*}
$$

where $\boldsymbol{z}_{h t}^{(b) *}$ is the subset of regressors selected for the h-step ahead forecast.
Forecast errors are calculated as

$$
\begin{align*}
\hat{e}_{t+h}^{(b)} & =y_{1, t+h}^{(b)}-\hat{y}_{1, t+h \mid t}^{(b)} \\
\tilde{e}_{t+h}^{(b)} & =y_{1, t+h}^{(b)}-\tilde{y}_{1, t+h \mid t}^{(b)} \tag{22}
\end{align*}
$$

Forecasting performance is measured by the mean squared forecast error (MSFE) computed as

$$
\begin{equation*}
\mathrm{MSFE}=\frac{1}{B} \sum_{b=1}^{B}\left[e_{t+h}^{(b)}\right]^{2} \tag{23}
\end{equation*}
$$

where $e_{t+h}^{(b)}$ is either $\hat{e}_{t+h}^{(b)}$ or $\tilde{e}_{t+h}^{(b)}$.

4.2 Summary of Monte Carlo Results

Results from the Monte Carlo simulations are reported in Tables 1 and 2. To study how the degree of predictability affects the findings, each table contains a panel with $R_{y}^{2}=0.2$ and $R_{x}^{2}=0.5$, and a panel with $R_{y}^{2}=R_{x}^{2}=0.8$. The former is closer to the empirical results that we obtain, while the second scenario is more relevant for highly persistent variables.

First consider the results in Table 1 for the data generated under DGP1. For both the univariate models and the FAVARs, the iterated approach dominates the direct approach. This is a robust finding that holds across estimation sample sizes $(w=60,120$, and 240), information criteria (AIC and BIC), and forecast horizons $(h=3,6,12$, and 24$)$. In this case the performance of the different methods can largely be explained by the effect of parameter estimation error. The relative performance of the direct to the iterated forecasts improves with the length of the estimation window, w, because it becomes less costly to use an inefficient estimation method in the larger samples. Conversely, for a fixed estimation window, w, the relative performance of the direct approach worsens as h increases because fewer observations are effectively available to estimate the parameters of the direct forecast model.

Turning to a comparison of the univariate and multivariate forecasts, under the iterated approach FAVAR-models selected by the simple AIC or BIC produce better forecasts on average than their univariate counterparts. The dominance of the iterated FAVAR models selected by the AIC is more pronounced in the high predictability scenario $\left(R_{y}^{2}=0.8\right)$ where the parameters of the model are more precisely estimated. Interestingly, the direct forecasts from the FAVAR models only dominate the direct univariate forecasts in the high predictability scenario.

For the longer horizons (i.e., $h \geq 6$), the modifications to the AIC work well as the data overlap becomes more pronounced and serial correlation in the errors is attenuated. In particular, the band diagonal modified AIC, defined by Eq. (17), improves over the simple direct AIC in three of six of the FAVAR cases shown in Table 1 when $h=6$, while this number rises to five of six cases when $h=24$. Interestingly, the band diagonal approach is generally more successful at reducing the MSFE-values than the Newey-West approach. The SURE approach provides an even better forecast performance and improves in four of six cases over the simple direct AIC when $h=6$ and in all six cases when $h=24$.

Turning to the second DGP, Table 2 now shows a few cases where the direct FAVAR forecasts produce better performance than the best iterated forecasts. It is clear from this DGP, however, that the degree of model misspecification has to be quite large for this to happen. The table also shows continued gains from using the SURE approach and the band diagonal covariance adjustment to the conventional AIC.

5 Empirical Results

In their empirical analysis, Marcellino, Stock and Watson (2006) (MSW) found that iterated univariate forecasts generally outperform direct univariate forecasts. Furthermore, they found that the relative performance of the iterated univariate forecasts improves with the forecast horizon.

MSW studied univariate and bivariate VARs with lag orders either fixed or selected by AIC or BIC. Apart from the search over lag orders, they did not, however, conduct a broad model specification search involving multivariate models. Hence, it remains to be seen whether their findings change under a broader model specification search. We consider this question using the same data as in the MSW study which comprises 170 U.S. macroeconomic time series measured at the monthly frequency over the period 1959-2002 (528 months). ${ }^{4}$

[^4]
5.1 Data Transformations

Following MSW, all variables are transformed by differencing a suitable number of times to achieve stationarity for estimation and model selection. ${ }^{5}$ In a second step, forecasts are transformed back to levels and compared to level variables. We briefly explain how the forecasts are computed under the direct and iterated approaches using the autoregressive models as an illustration.

Denote the variables in levels by x_{t} and differenced variables by y_{t}. AR forecasts can be computed as follows. Under the iterated approach, y_{t+h} is predicted and $\hat{x}_{t+h \mid t}$ is constructed from x_{t} and $\hat{y}_{t+h \mid t}$. The forecasts from the AR model are based on the sample $y_{t-w+1}, y_{t-w+2}, \ldots, y_{t}$. Here $y_{t}=x_{t}$ if the variable is $\mathrm{I}(0), y_{t}=\Delta x_{t}$ if the variable is $\mathrm{I}(1)$, and $y_{t}=\Delta^{2} x_{t}$ if the variable is $\mathrm{I}(2)$. For each variable we use the same order of integration as MSW.

Under the iterated approach the forecast of x_{t+h} is constructed from the forecast of y_{t+h}, x_{t}, and Δx_{t} as follows

$$
\hat{x}_{t+h \mid t}=\left\{\begin{array}{ll}
\hat{y}_{t+h \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(0) \\
x_{t}+\sum_{i=1}^{h} \hat{y}_{t+i \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(1) \\
x_{t}+h \Delta x_{t}+\sum_{i=1}^{h} \sum_{j=1}^{i} \hat{y}_{t+j \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(2)
\end{array} .\right.
$$

Similarly, under the direct approach, the forecast of x_{t+h} is constructed from the forecast of y_{t+h}, x_{t}, and Δx_{t} as follows

$$
\hat{x}_{t+h \mid t}=\left\{\begin{array}{ll}
\hat{y}_{t+h \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(0) \\
x_{t}+\hat{y}_{t+h \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(1) \\
x_{t}+h \Delta x_{t}+\hat{y}_{t+h \mid t} & \text { if } x_{t} \text { is } \mathrm{I}(2)
\end{array} .\right.
$$

5.2 Setup

Forecasting is performed recursively, begins in 1979M1 (with a minimum of w observations before forecasting) and runs until the end of the sample, 2002M12. This yields up to 286 forecasts for $h=3$, and so on. Forecasts are reported for horizons of $h=3,6,12$, and 24 months. Two window lengths are used for estimation, namely $w=120$ and $w=240$, that is, 10 and 20 years of data. Fixing the window length allows us to better understand the role of estimation error in the relative performance of the various approaches.

To address the effect of model selection on the multivariate forecasts, we extract factors from the 170 series arranged into five groups, namely (A) one factor for "income, output, sales, capacity utilization" (38 variables); (B) one factor for "employment and unemployment" (27 variables); (C) one factor for "construction, inventories, and orders" (37 variables); (D) one factor for

[^5]"interest rates and asset prices" (33 variables); and (E) one factor for "nominal prices, wages, and money" (35 variables).

To avoid any look-ahead biases, the factors are estimated recursively. We then obtain forecasts of the factors from VARs fitted to all five factors with lag orders chosen by AIC or BIC and $p_{\max }=2$. The search over FAVAR models is thus conducted over specifications that include own lags as well as those of the factors. The space of models is limited as follows. For the univariate autoregressive models the possible lag lengths are $p=0,1,2, \ldots, 12$, where $p=0$ is an intercept only model. For the factor-augmented VAR models we search across five factors with zero, one or two lags in addition to an intercept. For computational simplicity the lag length is restricted to be the same for $y_{i t}$ and $\hat{f}_{i t}$.

5.3 Forecasting Performance

Empirical results are summarized in Tables 3-9. We present MSFE-values averaged across all 170 variables (Table 3) as well as subsets of these (Table 8). Since these could be dominated by extreme values for individual variables, we also report the proportion of cases (again out of the 170 variables) where a modeling approach either dominates the benchmark univariate iterated forecasting model selected by the AIC (Table 4), or an approach is best overall for a given variable (Table 5). To evaluate statistical significance, we conduct pairwise comparisons of the forecast precision of various approaches against the benchmark univariate iterated models selected by the AIC using the approach suggested by Giacomini and White (2006) (Table 7). Finally, to understand whether the performance of a given forecasting approach is driven by its bias or by imprecision in the forecasts, we report separately the magnitude of the squared bias component in the MSFE (Tables 6 and 9).

5.3.1 Univariate Models

Table 3 shows the relative forecasting performance (measured by MSFE) of the iterated and direct methods averaged over all 170 variables included in the MSW data. The iterated univariate forecasts based on models selected by the AIC are better on average than the direct ones, particularly at long horizons ($h=12$ and 24 months) and when the estimation window is short ($w=120$). Conversely, with a longer estimation window $(w=240)$ the direct univariate forecasting models selected by the more parsimonious BIC perform better than the iterated forecasts selected by this criterion. To understand this, recall that the iterated forecasts are more efficient and therefore tend to have a lower estimation error. Such errors are most important for large models (AIC penalizes large models less than the BIC) and
when the sample size is short. ${ }^{6}$
For the short estimation window ($w=120$), the iterated models selected by the AIC deliver the best average forecasting performance among the univariate models. For the longer estimation window ($w=240$), however, the best forecasting performance for horizons of $h=3$ and $h=6$ months is produced by the direct forecast model selected by the AIC modified by using a Newey-West covariance matrix. Once again the univariate iterated approach based on the AIC dominates on average when $h=12$ and 24 months. For the direct univariate forecast models there is only very limited evidence that the SURE estimation approach helps reducing average MSFE-values.

The average MSFE-values reported in Table 3 may be dominated by the most volatile variables and could provide an incomplete picture of relative forecasting performance. To deal with this, Table 4 shows the proportion of the 170 variables for which the iterated univariate AR forecasts based on models selected by the AIC generate a larger MSFE than the various alternatives. We use the iterated univariate forecasts selected by the AIC as our benchmark given the earlier evidence that this approach generally selects good univariate models, a finding corroborated by the results reported by MSW.

Among the univariate forecasts, for the short estimation window $(w=$ 120), only the iterated forecasts based on models selected by the BIC produce a majority of cases that outperform the iterated AIC, and only then for $h=3$ or $h=6$ months. With a longer estimation window ($w=240$) the direct forecasts based on the AIC, whether modified or not, also produce lower average MSFE-values for the majority of variables at horizons of three and six months.

Table 5 shows the proportion of cases (averaged across the 170 variables) where each of the respective methods produces the lowest MSFE value. Among the univariate approaches only the iterated AIC and the iterated BIC produce a sizeable proportion of variables with the lowest MSFE-value, particularly for the short estimation window ($w=120$) and at the longest forecast horizons.

From a theoretical perspective it is unclear whether the iterated approach leads to greater (squared) biases than the direct approach. To shed empirical light on this issue, Table 6 reports the squared forecast bias as a ratio of the MSFE of the benchmark iterated univariate forecast models selected by the AIC. For all methods the squared bias grows as a proportion of the MSFE of the benchmark model when the forecast horizon is extended. Interestingly, at short horizons $(h \leq 6)$ the squared bias component of the iterated forecasts based on models selected by the AIC is slightly larger than that of the direct

[^6]approaches, while conversely the relative bias of the iterated AIC models is smaller at the two longest horizons $(h=12,24)$. The iterated forecast models selected by the BIC generate a comparatively large bias that exceeds that generated by the direct forecast models selected by the BIC, suggesting that the parsimony of these models comes at the expense of a larger bias.

5.3.2 Multivariate Models

Turning to the factor-augmented VAR models, Table 3 shows that the iterated forecasts continue to do better on average than the direct FAVAR forecasts when a short estimation window $(w=120)$ is used. These results are frequently overturned, however, when the long estimation window $(w=240)$ is used. In the latter case, the direct forecasting method is better for forecast horizons of $h=3,6$ and 12 months irrespective of which information criterion is used, and also for $h=24$ months under the diagonal modified AIC method or the SURE estimation approach. ${ }^{7}$

For the factor-augmented models, Table 3 shows that the band-diagonal modification to the AIC helps improve the average performance of the direct forecasts across all horizons and for both estimation windows ($w=120$ or $w=240$). The Newey-West modification is less consistent in improving on the conventional AIC method. Moreover, in contrast with the univariate models, the SURE approach generally improves the direct FAVAR forecasts, particularly with a long estimation window $(w=240)$.

Comparing the average forecasting performance across both univariate and multivariate models, at the shortest horizon $(h=3)$ the SURE method combined with the BIC produces the lowest average MSFE-values when $w=$ 120. Similarly, when $w=240$, the direct forecast models estimated by SURE produce the best performance for $h=3$ and $h=6$ months. In all other cases, the univariate iterated forecast models selected by the AIC produce the lowest average MSFE values. These results are somewhat dominated by extreme cases, however. Table 4 shows that for a majority of the 170 variables the iterated FAVAR forecasts based on models selected by AIC or BIC produce lower MSFE values than the univariate iterated forecasting models selected by AIC.

Table 5 shows additional evidence that the iterated FAVAR models perform well. The multivariate iterated forecasting models selected by the AIC or BIC produce the lowest MSFE-values for around 40% of the 170 variables. This is a greater share than is recorded by other methods, although the SURE approach also performs well at the shortest horizon $(h=3)$.

Table 6 shows that the squared bias associated with the FAVAR models

[^7]tends to exceed the squared bias found for the univariate models. Moreover, for the multivariate models the iterated approach tends to produce larger biases than the direct forecast approach.

In conclusion, for the majority of variables the iterated FAVAR models generate smaller forecast errors than the best univariate approach. There is less evidence in favor of the direct forecasting models. Only for $w=$ 240 and $h=3$ or 6 months do we find that the direct approach leads to comparable forecasting performance. Overall, these findings demonstrate the value from utilizing multivariate information and also provide evidence that our proposed refinements to standard information criteria work in many cases.

5.4 Model Comparisons

Table 7 provides test results based on a formal comparison of the benchmark univariate iterated model selected by the AIC with the alternative approaches listed in each row. Tests are based on the methodology advocated by Giacomini and White (2006), which is ideally suited for our purpose since we are conducting pair-wise model comparisons and use rolling window estimators. The table lists the percentage of model comparisons for which the null of equal predictive accuracy is rejected in a two-sided test conducted at a 5% significance level against the alternative that the univariate iterated models selected by the AIC are best or, conversely, that the alternative model is best (listed in brackets).

The percentage of cases where the iterated univariate AIC method dominates other univariate forecast methods generally grows with the forecast horizon and is around 5 to 15% when $h=3$ or $h=6$ months and 10 to 20% for $h=12$ or $h=24$ months. We find far fewer cases where the iterated univariate forecasts selected by the AIC are rejected in favor of alternative univariate methods.

These test results provide statistical evidence that the univariate iterated AIC approach frequently performs significantly better than the other univariate methods. Hence there is little evidence to prefer alternative univariate methods.

Turning to the factor-augmented models, the evidence is generally less clear-cut, with the proportion of significant cases where the iterated univariate AIC forecasts are preferred over other approaches such as the direct AIC forecasts, generally being more balanced, at least at the short horizon. In most cases, however, the iterated univariate AIC forecasts continue to reject alternative approaches more often than it gets rejected itself. Exceptions to this are the iterated FAVAR models based on either the AIC or BIC which reject about as often as they themselves get rejected by the univariate iterated models based on the AIC.

5.5 Results by Variable Categories

The empirical results turn out to be quite similar for four of the five categories of economic variables, namely (A) income, output, sales and capacity utilization, (B) employment and unemployment, (C) construction, inventories and orders, and (D) interest rates and asset prices. In contrast, quite different results are obtained for the fifth category, (E), nominal prices, wages and money. For this reason, Tables 8 and 9 present separate results averaged across variables in categories A-D versus category E variables.

Table 8 shows that the benefit from using the multivariate factor-based approach comes out very strongly for the first four categories. For these variables, across almost all sample sizes and forecast horizons, the models selected by the multivariate iterated AIC or BIC produce lower MSFE-values than the univariate iterated AIC approach. Among the direct FAVAR forecasts the modified AIC and SURE methods perform quite well, particularly with the long estimation window ($w=240$.)

Across the first four categories of variables, the multivariate iterated approach based on the BIC performs best for the shortest estimation window ($w=120$) when $h=3,6$ or 12 months. When $w=240$, the iterated FAVAR approach based on the AIC generates the best results on average, except for when $h=3$ where the SURE approach is best. Table 9 shows that forecasts based on these methods are only modestly biased.

In contrast, for the final group of variables, (E) nominal prices, wages and money, the FAVAR approach strongly underperforms against the univariate iterated AIC models. Iterated FAVAR models are particularly poor and are outperformed by their direct counterparts. This suggests that the iterated FAVAR models are heavily biased, a conjecture that is confirmed in Table 9 which reveals massive biases for the iterated FAVAR models at long horizons. The biases associated with the direct forecast models are much smaller.

6 Conclusion

We compare the performance of iterated and direct forecasts generated by univariate and multivariate (factor-augmented VAR) models. Our simulations and empirical results show an interesting interaction between the length of the estimation window, how strongly a particular model selection method penalizes the inclusion of additional variables, the forecast horizon, the method used to estimate model parameters and the relative performance of the direct versus iterated approaches.

Like Marcellino, Stock and Watson (2006), our results suggest that there is no single dominant approach and that the best forecasting method varies considerably across economic variables. The iterated factor-augmented VAR approach performs considerably better than the best univariate forecasting approach for variables tracking income, output, employment, construction,
interest rates and asset prices. Conversely, the univariate iterative models dominate among variables tracking nominal prices, wages and money. For such variables the factor-augmented iterated models produce heavily biased forecasts.

Our empirical and simulation results suggest that the degree of model misspecification has to be quite large for the direct forecasts to start dominating the iterated forecasts and that the forecasts generated by autoregressive models of low order-whether factor-augmented or not-are difficult to beat for most economic variables. This is a result of the (squared) bias component generally playing a relatively minor role relative to the importance of parameter estimation error in the composition of MSFE-values. Consistent with this, the iterated forecasting approach performs particularly well relative to the direct approach when the sample size is small, when using an information criterion such as the AIC that does not penalize additional parameters too heavily and when the forecast horizon gets large.

References

[1] Athanasopoulos, G. and F. Vahid, 2008, VARMA versus VAR for macroeconomic forecasting. Journal of Business and Economic Statistics, 26, 237-251.
[2] Bai, Jushan and Serena Ng, 2002, Determining the number of factors in approximate factor models. Econometrica, 70, 161-221.
[3] Bai, Jushan and Serena Ng, 2009, Boosting diffusion indices, Journal of Applied Econometrics, 24, 607-629.
[4] Bao, Y. 2007, Finite sample properties of forecasts from the stationary first-order autoregressive model under a general error distribution. Econometric Theory, 23, 767-773.
[5] Bernanke, Ben S., Jean Boivin and Piotr Eliasz, 2005, Measuring the effect of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, 120, 387-422.
[6] Bhansali, Rajendra J., 1999, Parameter estimation and model selection for multistep prediction of a time series: a review. in Asymptotics, Non-parametrics and Time Series, (ed. Subir Ghosh), 201-225, Marcel Dekker, New York.
[7] Brown, Bryan W. and Roberto S. Mariano, 1989, Measures of deterministic prediction bias in nonlinear models. International Economic Review, 30, 667-684.
[8] Chevillon, Guillaume, 2007, Direct multi-step estimation and forecasting. Journal of Economic Surveys, 21, 746-785.
[9] Clements, Michael, and David Hendry, 1998, Forecasting economic time series, Cambridge University Press, Cambridge.
[10] Cox, David R., 1961, Prediction by exponentially weighted moving averages and related methods. Journal of the Royal Statistical Society, B 23, 414-422.
[11] Favero, Carlo A. and Andrea Tamoni, 2010, Demographics and the term structure of stock market risk, mimeo, Bocconi University.
[12] Findley, David F.,1983, On the use of multiple models for multi-period forecasting. Proceedings of Business and Economic Statistics, American Statistical Association, 528-531.
[13] Forni Mario, Hallin Marc, Lippi Marco, Reichlin Lucrezia, 2005, The generalized dynamic factor model, one sided estimation and forecasting. Journal of the American Statistical Association, 100, 830-840.
[14] Giacomini, Raffaella and Halbert White, 2006, Tests of conditional predictive ability. Econometrica, 74, 1545-1578.
[15] Hoque, A., J.R. Magnus and B. Pesaran, 1988, The exact multi-period mean squared forecast error for the first-order autoregressive model. Journal of Econometrics, 39, 327-346.
[16] Ing, Ching-Kang, 2003, Multistep prediction in autoregressive processes. Econometric Theory, 19, 254-279.
[17] Marcellino, Massimiliano, James H. Stock and Mark W. Watson, 2006, A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series.' Journal of Econometrics, 135, 499-526.
[18] Newey, Whitney K. and Mark W. West, 1987, A simple, positive semidefinite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703-708.
[19] Pesaran, M. Hashem, and Allan Timmermann, 2005, Small sample properties of forecasts from autoregressive models under structural breaks. Journal of Econometrics, 129, 183-217.
[20] Schorfheide, Frank, 2005, VAR forecasting under misspecification. Journal of Econometrics, 128, 99-136.
[21] Stock, James H., and Mark W. Watson, 2002, Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97, 1167-1179.
[22] Stock, James H., and Mark W. Watson, 2005, Implications of dynamic factor models for VAR analysis, mimeo, Princeton University.
[23] Ullah, Aman, 2004, Finite sample econometrics, Oxford University Press, Oxford.
 The table reports the MSFE for the different forecasting methods. The forecasts labeled 'mod. AIC(diag)' and 'mod. AIC(NW)' are based on the
modified AIC with band diagonal or Newey-West covariance matrices. Forecasts 'AIC(SURE) and 'BIC(SURE)' are based on models that allow modified AIC with band diagonal or Newey-West covariance matrices. Forecasts 'AIC(SURE)' and 'BIC(SURE)' are based on models that allow for autocorrelation in the likelihood function and use OLS estimates once the model has been selected. w is the length of the estimation window. on 10,000 iterations. Details of DGP 1 and 2 are given in Section 4.

Forecast horizon	3	6	12	24	$\begin{aligned} & \hline \hline 3 \\ & =0.2, \end{aligned}$	$\begin{aligned} & \hline 6 \\ & { }^{2}{ }_{x}^{2}=0.5 \end{aligned}$	12	24	3	6	12	24
	AR, $w=60$				$\mathrm{AR}, w=120$				AR, $w=240$			
iterated AIC	1.335	1.319	1.307	1.292	1.313	1.301	1.265	1.270	1.247	1.274	1.318	1.267
direct AIC	1.362	1.372	1.387	1.558	1.321	1.315	1.293	1.311	1.252	1.286	1.334	1.277
mod. AIC(NW)	1.376	1.404	1.424	1.676	1.327	1.321	1.305	1.323	1.255	1.288	1.335	1.280
mod. AIC(diag)	1.360	1.376	1.431	1.947	1.320	1.315	1.306	1.338	1.251	1.284	1.334	1.283
AIC(SURE)	1.368	1.402	1.463	1.586	1.329	1.323	1.316	1.341	1.253	1.294	1.346	1.296
iterated BIC	1.306	1.290	1.297	1.287	1.296	1.293	1.265	1.270	1.239	1.270	1.318	1.267
direct BIC	1.314	1.305	1.320	1.343	1.296	1.297	1.271	1.281	1.239	1.272	1.321	1.268
BIC(SURE)	1.325	1.333	1.402	1.397	1.305	1.307	1.293	1.314	1.243	1.278	1.334	1.287
	FAVAR, $w=60$				FAVAR, $w=120$				FAVAR, $w=240$			
iterated AIC	1.321	1.282	1.290	1.265	1.256	1.292	1.247	1.268	1.263	1.274	1.267	1.257
direct AIC	1.412	1.385	1.430	1.486	1.286	1.343	1.305	1.331	1.270	1.302	1.296	1.281
mod. AIC(NW)	1.416	1.407	1.450	1.525	1.287	1.346	1.307	1.337	1.273	1.303	1.297	1.285
mod. AIC(diag)	1.400	1.368	1.425	1.581	1.284	1.333	1.289	1.328	1.267	1.293	1.290	1.276
AIC(SURE)	1.414	1.383	1.427	1.486	1.287	1.341	1.300	1.331	1.272	1.300	1.297	1.280
iterated BIC	1.317	1.280	1.289	1.265	1.251	1.291	1.247	1.268	1.262	1.274	1.267	1.257
direct BIC	1.361	1.324	1.353	1.372	1.266	1.308	1.265	1.291	1.265	1.282	1.274	1.262
BIC(SURE)	1.358	1.321	1.357	1.382	1.262	1.303	1.261	1.294	1.267	1.279	1.272	1.264

	$\mathrm{AR}, w=60$				$\mathrm{AR}, w=120$				AR, $w=240$			
iterated AIC	6.146	5.978	5.867	5.898	5.893	5.941	5.728	5.656	5.684	5.729	5.820	5.581
direct AIC	6.374	6.463	6.481	7.657	5.944	6.042	5.917	5.898	5.692	5.788	5.885	5.644
mod. AIC(NW)	6.446	6.596	6.680	8.250	5.942	6.059	5.927	5.939	5.701	5.785	5.885	5.644
mod. AIC(diag)	6.288	6.419	6.628	9.232	5.894	6.002	5.883	5.997	5.678	5.768	5.876	5.642
AIC(SURE)	6.229	6.251	6.478	7.750	5.885	5.979	5.915	5.987	5.686	5.769	5.904	5.694
iterated BIC	5.959	5.861	5.813	5.857	5.822	5.882	5.712	5.654	5.652	5.693	5.814	5.580
direct BIC	5.981	5.956	6.018	6.371	5.766	5.913	5.751	5.741	5.631	5.707	5.836	5.590
BIC(SURE)	5.960	5.971	6.134	6.622	5.787	5.905	5.774	5.853	5.634	5.716	5.844	5.637
	FAVAR, $w=60$				FAVAR, $w=120$				FAVAR, $w=240$			
iterated AIC	5.734	5.963	5.718	5.771	5.460	5.887	5.587	5.551	5.441	5.635	5.560	5.559
direct AIC	5.649	6.552	6.586	7.254	5.154	6.020	5.859	5.937	4.886	5.648	5.727	5.731
mod. AIC(NW)	5.651	6.597	6.625	7.406	5.143	6.032	5.864	5.938	4.895	5.660	5.707	5.721
mod. AIC(diag)	5.623	6.453	6.472	7.555	5.130	6.031	5.765	5.890	4.919	5.668	5.671	5.659
AIC(SURE)	5.816	6.363	6.328	7.182	5.300	5.992	5.740	5.883	5.112	5.664	5.688	5.678
iterated BIC	5.768	5.927	5.712	5.770	5.517	5.868	5.587	5.549	5.496	5.625	5.558	5.559
direct BIC	5.626	6.252	6.215	6.678	5.144	5.941	5.718	5.753	4.918	5.614	5.622	5.636
BIC(SURE)	5.853	6.147	6.100	6.728	5.434	5.931	5.649	5.761	5.393	5.636	5.578	5.590

[^8]Table 3: Average forecasting performance measured by the MSFE relative to the corresponding value generated by the univariate iterated forecast models selected by the AIC

Forecast horizon	3	6	12	24	3	6	12	24
	$A R, w=120$				$A R, w=240$			
iterated AIC	1.000	1.000	1.000	1.000	0.962	0.945	0.952	0.994
direct AIC	1.015	1.018	1.084	1.208	0.964	0.945	0.987	1.087
mod. AIC(diag)	1.013	1.017	1.106	1.202	0.964	0.944	0.982	1.097
mod. AIC(NW)	1.003	1.015	1.086	1.227	0.957	0.939	0.986	1.090
AIC(SURE)	1.017	1.028	1.081	1.190	0.985	0.997	1.058	1.106
iterated BIC	1.009	1.037	1.053	1.049	1.007	1.042	1.085	1.148
direct BIC	1.009	1.017	1.077	1.157	0.970	0.953	0.989	1.081
BIC(SURE)	1.007	1.026	1.087	1.150	0.993	1.024	1.069	1.093
	FAVAR, $w=120$				$F A V A R, w=240$			
iterated AIC	0.977	1.032	1.075	1.069	0.974	1.028	1.058	1.117
direct AIC	0.985	1.045	1.129	1.252	0.949	0.995	1.049	1.134
mod. AIC(diag)	0.984	1.038	1.108	1.204	0.947	0.993	1.035	1.103
mod. AIC(NW)	0.981	1.046	1.133	1.259	0.948	0.992	1.046	1.141
AIC(SURE)	0.978	1.048	1.133	1.227	0.940	0.983	1.038	1.109
iterated BIC	0.974	1.015	1.046	1.086	0.983	1.041	1.083	1.156
direct BIC	0.981	1.018	1.106	1.223	0.960	0.998	1.043	1.117
BIC(SURE)	0.965	1.020	1.105	1.216	0.941	0.980	1.029	1.098

The table reports the MSFE of the different forecasts relative to the MSFE of the iterated AR forecast based on the models selected by AIC with $w=120$, where w is the length of the estimation window. 'AR' results are based on univariate autoregressive models and 'FAVAR' results are based on multivariate factor-augmented VAR models. The MSFEs are calculated only for those periods where forecasts from all methods are available. The forecasts labeled 'mod. AIC(diag)' and 'mod. AIC(NW)' are based on the modified AIC with band diagonal or Newey-West covariance matrices. Forecasts 'AIC(SURE)' and 'BIC(SURE)' are based on models that allow for autocorrelation in the likelihood function and use OLS estimates once the model has been selected. Averages are computed across all 170 series in the Marcellino, Stock and Watson (2006) data set.

Table 4: Proportion of variables for which individual forecast methods generate a lower MSFE than the corresponding values generated by the univariate iterated forecast models selected by the AIC

Forecast horizon	3	6	12	24	3	6	12	24
	$A R, w=120$				$A R, w=240$			
direct AIC	0.441	0.429	0.218	0.176	0.518	0.506	0.359	0.235
mod. AIC(diag)	0.435	0.394	0.235	0.153	0.547	0.506	0.365	0.212
mod. AIC(NW)	0.500	0.418	0.229	0.165	0.547	0.506	0.365	0.235
AIC(SURE)	0.447	0.353	0.194	0.159	0.318	0.412	0.265	0.212
iterated BIC	0.541	0.535	0.482	0.471	0.512	0.424	0.388	0.424
direct BIC	0.412	0.418	0.200	0.165	0.447	0.429	0.324	0.241
BIC(SURE)	0.476	0.365	0.194	0.171	0.406	0.412	0.271	0.235
	$F A V A R, w=120$				$F A V A R, w=240$			
iterated AIC	0.641	0.541	0.500	0.488	0.659	0.576	0.565	0.600
direct AIC	0.565	0.441	0.341	0.212	0.665	0.518	0.435	0.429
mod. AIC(diag)	0.565	0.465	0.371	0.271	0.647	0.535	0.441	0.459
mod. AIC(NW)	0.600	0.418	0.300	0.212	0.647	0.547	0.435	0.441
AIC(SURE)	0.582	0.412	0.306	0.194	0.671	0.547	0.418	0.447
iterated BIC	0.724	0.618	0.565	0.500	0.635	0.553	0.588	0.594
direct BIC	0.612	0.500	0.335	0.212	0.647	0.529	0.424	0.429
BIC(SURE)	0.641	0.476	0.341	0.218	0.676	0.571	0.441	0.447

The table reports the proportion of series for which the iterated AR forecasts based on the models selected by AIC have larger MSFEs than forecasts based on the respective information criteria. Hence, values above 0.5 suggest that the respective method dominates univariate AIC forecasts for a majority of variables. For a description of the model selection methods see the footnote to Table 3. Proportions are computed as averages across all 170 series in the Marcellino, Stock and Watson (2006) data set.

Table 5: Proportion of variables for which individual forecast methods produce the lowest MSFE-values

Forecast horizon	3	6	12	24	3	6	12	24
	$A R, w=120$				$A R, w=240$			
erated AIC	0.041	0.094	0.124	0.206	0.071	0.094	0.129	0.165
direct AIC	0.018	0.029	0.029	0.006	0.035	0.035	0.035	0.024
mod. AIC(diag)	0.041	0.029	0.006	0.018	0.041	0.041	0.035	0.000
mod. AIC(NW)	0.071	0.065	0.035	0.041	0.041	0.076	0.035	0.018
AIC(SURE)	0.041	0.018	0.006	0.006	0.029	0.029	0.000	0.024
iterated BIC	0.065	0.106	0.135	0.106	0.053	0.035	0.059	0.024
direct BIC	0.024	0.024	0.047	0.012	0.006	0.024	0.006	0.018
BIC(SURE)	0.029	0.029	0.012	0.029	0.035	0.065	0.006	0.000
	FAVAR, $w=120$				FAVAR, $w=240$			
iterated AIC	0.247	0.171	0.188	0.247	0.106	0.129	0.176	0.247
direct AIC	0.012	0.018	0.041	0.018	0.024	0.024	0.047	0.076
mod. AIC(diag)	0.018	0.035	0.053	0.059	0.024	0.035	0.053	0.094
mod. AIC(NW)	0.029	0.041	0.024	0.012	0.053	0.029	0.041	0.029
AIC(SURE)	0.059	0.047	0.006	0.012	0.118	0.065	0.053	0.047
iterated BIC	0.182	0.188	0.229	0.171	0.165	0.218	0.253	0.141
direct BIC	0.047	0.047	0.041	0.053	0.053	0.035	0.029	0.059
BIC(SURE)	0.076	0.059	0.024	0.006	0.147	0.065	0.041	0.035

For each forecast horizon and window length, the table reports the proportion of variables for which the respective forecast methods generate the lowest MSFE-value. For the model selection methods see the footnote to Table 3. Proportions are computed across all 170 series in the Marcellino, Stock and Watson (2006) data set.

Table 6: Average ratio of squared bias measured relative to the MSFE of the iterated univariate forecast models selected by the AIC

Forecast horizon	3	6	12	24	3	6	12	24
	$A R, w=120$				$A R, w=240$			
rated AIC	0.014	0.028	0.049	0.090	0.019	0.040	0.074	0.154
direct AIC	0.012	0.023	0.048	0.114	0.018	0.037	0.079	0.194
mod. AIC(diag)	0.012	0.023	0.052	0.120	0.018	0.037	0.079	0.195
mod. AIC(NW)	0.012	0.023	0.049	0.114	0.019	0.038	0.078	0.195
AIC(SURE)	0.013	0.024	0.048	0.116	0.025	0.040	0.081	0.202
iterated BIC	0.025	0.050	0.081	0.129	0.041	0.092	0.166	0.294
direct BIC	0.016	0.029	0.056	0.117	0.022	0.042	0.085	0.198
BIC(SURE)	0.018	0.031	0.059	0.122	0.032	0.050	0.094	0.213
	$F A V A R, w=120$				FAVAR, $w=240$			
iterated AI	0.036	0.068	0.106	0.163	0.056	0.117	0.206	0.365
direct AIC	0.027	0.043	0.070	0.152	0.038	0.061	0.104	0.226
mod. AIC(diag)	0.026	0.041	0.073	0.164	0.038	0.065	0.106	0.215
mod. AIC(NW)	0.026	0.043	0.070	0.152	0.037	0.061	0.104	0.230
AIC(SURE)	0.025	0.041	0.069	0.151	0.035	0.055	0.097	0.206
iterated BIC	0.033	0.063	0.098	0.152	0.058	0.124	0.217	0.374
direct BIC	0.028	0.042	0.073	0.157	0.041	0.067	0.109	0.227
BIC(SURE)	0.025	0.041	0.073	0.157	0.037	0.061	0.101	0.205

The table reports the squared bias of the different forecasts as a ratio of the corresponding MSFE of the iterated AR forecast based on the models selected by AIC with $w=120$, where w is the length of the estimation window. For the model selection methods see the footnote to Table 3. Averages are computed across all 170 series in the Marcellino, Stock and Watson (2006) data set.
Table 7: Pairwise forecast comparison tests

The table reports the results of the Giacomini and White (2006) test with null hypothesis that the iterated AR forecast based on AIC
and the method in the respective row are equally accurate. Reported are the proportions of rejections at the 5% level for the twosided test where the iterated AR (AIC) forecast has the lowest MSFE and in brackets the proportion of rejections when the respective forecasting method has the lower MSFE. For the model selection methods see the footnote to Table 3.

Table 8: Average forecasting performance measured by the MSFE relative to the corresponding value generated by the univariate iterated forecasting models selected by the AIC in sub-categories of the Marcellino, Stock and Watson (2006)

The table reports the MSFE of the different forecasts as a ratio of the MSFE of the iterated AR forecast based on the model selected by AIC with $w=120$, where w is the length of the estimation window. 'AR' results are based on univariate autoregressive models and 'FAVAR' results are based on multivariate factor-augmented VAR models. The MSFEs are calculated only for those periods where forecasts from all methods are available. For details see the footnote to Table 3.

Table 9: Average ratio of squared bias measured relative to the MSFE of the iterated univariate forecasts selected by the AIC in sub-categories of the Marcellino, Stock and Watson (2006) data

Forecast horizon	3	6	12	24	3	6	12	24
Categories (A)-(D) (averages over 135 series)								
	$A R, w=120$					$A R, w=240$		
iterated AIC	0.008	0.017	0.027	0.054	0.013	0.027	0.047	0.097
direct AIC	0.008	0.015	0.032	0.068	0.013	0.026	0.053	0.129
mod. AIC(diag)	0.008	0.016	0.037	0.067	0.013	0.026	0.053	0.128
mod. AIC(NW)	0.009	0.016	0.033	0.068	0.013	0.026	0.053	0.129
AIC(SURE)	0.008	0.016	0.031	0.066	0.015	0.029	0.054	0.125
iterated BIC	0.009	0.019	0.028	0.053	0.015	0.031	0.051	0.099
direct BIC	0.008	0.016	0.033	0.064	0.014	0.027	0.054	0.117
BIC(SURE)	0.009	0.017	0.034	0.065	0.016	0.030	0.053	0.119
	FAVAR, $w=120$				$F A V A R, w=240$			
iterated AIC	0.019	0.032	0.044	0.078	0.031	0.056	0.082	0.137
direct AIC	0.014	0.020	0.040	0.108	0.024	0.042	0.088	0.221
mod. AIC(diag)	0.015	0.022	0.048	0.119	0.024	0.044	0.087	0.194
mod. AIC(NW)	0.014	0.021	0.041	0.110	0.023	0.041	0.087	0.223
AIC(SURE)	0.013	0.019	0.040	0.109	0.022	0.037	0.080	0.196
iterated BIC	0.016	0.026	0.035	0.065	0.027	0.046	0.068	0.121
direct BIC	0.016	0.021	0.041	0.108	0.025	0.044	0.088	0.210
BIC(SURE)	0.014	0.020	0.043	0.109	0.024	0.040	0.080	0.186
Category (E) (averages over 35 series)								
	$A R, w=120$				$A R, w=240$			
iterated AIC	0.035	0.074	0.134	0.228	0.041	0.088	0.180	0.372
direct AIC	0.026	0.054	0.108	0.292	0.039	0.081	0.178	0.445
mod. AIC(diag)	0.026	0.053	0.111	0.322	0.039	0.081	0.177	0.456
mod. AIC(NW)	0.025	0.052	0.108	0.293	0.040	0.083	0.179	0.447
AIC(SURE)	0.028	0.054	0.114	0.306	0.062	0.081	0.185	0.499
iterated BIC	0.083	0.171	0.286	0.421	0.138	0.323	0.609	1.042
direct BIC	0.048	0.077	0.146	0.323	0.051	0.096	0.207	0.508
BIC(SURE)	0.052	0.085	0.159	0.338	0.093	0.128	0.250	0.576
	FAVAR, $w=120$				FAVAR, $w=240$			
iterated AIC	0.100	0.206	0.344	0.490	0.151	0.353	0.683	1.241
direct AIC	0.076	0.130	0.186	0.321	0.090	0.133	0.167	0.247
mod. AIC(diag)	0.068	0.118	0.171	0.338	0.091	0.145	0.182	0.296
mod. AIC(NW)	0.072	0.127	0.181	0.315	0.092	0.135	0.170	0.253
AIC(SURE)	0.072	0.126	0.181	0.312	0.083	0.127	0.164	0.244
iterated BIC	0.099	0.205	0.340	0.485	0.178	0.425	0.791	1.350
direct BIC	0.076	0.124	0.194	0.345	0.105	0.155	0.188	0.293
BIC(SURE)	0.069	0.123	0.186	0.341	0.091	0.142	0.182	0.279

The table reports the squared bias of the different forecasts as a ratio of the MSFE of the iterated AR forecast based on the model selected by AIC with $w=120$, where w is the length of the estimation window. For the model selection methods see the footnote to Table 3.

[^0]: *We are grateful to three anonymous referees as well as the co-editor, Oliver Linton, for helpful comments. We also thank Alessio Sancetta and seminar participants at the 2008 Rio Forecasting Conference at Fundacao Getulio Vargas, the NBER-NSF Time Series conference at UC Davis, NESG meeting at KU Leuven, DNB, the European Central Bank, UCSD and University of Toronto for comments and suggestions on the paper. This paper was written while Andreas Pick was Sinopia Research Fellow at the University of Cambridge. He acknowledges financial support from Sinopia, quantitative specialist of HSBC Global Asset Management. Timmermann acknowledges support from CREATES, funded by the Danish National Research Foundation. The opinions expressed in this paper do not necessarily reflect those of DNB.

[^1]: ${ }^{1}$ Alternatively, one could model only the factors that have been selected in the conditional specification in Eq. (4). This may be less efficient than using the full VAR in Eq. (5), but a smaller number of parameters needs to be estimated from a finite number of observations. It is therefore not clear a priori which approach will perform better.

[^2]: ${ }^{2}$ For relatively large values of h, the estimates of $\hat{\gamma}(s)$ can be down-weighted using Bartlett or Parzen weights.

[^3]: ${ }^{3}$ For simplicity, we refer to $\mathbf{z}_{\tau-1}$ as comprising both the most recent lag as well as any additional lags. This notation therefore corresponds to using the companion form of the model.

[^4]: ${ }^{4}$ We are grateful to Mark Watson for making this data set publicly available.

[^5]: ${ }^{5}$ We ignore structural breaks. See Pesaran and Timmermann (2005) for an analysis of this in the case of forecasts from autoregressive models.

[^6]: ${ }^{6}$ Univariate models selected by the AIC on average include three or four variables for the short estimation sample and four or five variables in the longer sample. For the univariate models selected by the BIC, this number declines to only one or two variables in the small estimation sample and two variables on average in the longer sample.

[^7]: ${ }^{7}$ As expected, the multivariate models include more predictor variables than their univariate counterparts. Under the AIC, on average five to seven regressors get included in the small sample, rising to six to eight variables in the larger sample. Once again, the BIC leads to somewhat smaller models with three to four predictor variables.

[^8]: See the footnote to Table 1

