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Abstract
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tor autoregressions. To account for serial correlation in the residuals
of the multi-period direct forecasting models we propose a new SURE-
based estimation method and modified Akaike information criteria for
model selection. Empirical analysis of the 170 variables studied by
Marcellino, Stock and Watson (2006) shows that information in fac-
tors helps improve forecasting performance for most types of economic
variables although it can also lead to larger biases. It also shows that
SURE estimation and finite-sample modifications to the Akaike in-
formation criterion can improve the performance of the direct multi-
period forecasts.
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1 Introduction

Economists are commonly asked to forecast uncertain outcomes multiple
periods ahead in time. For example, when the economy is in a recession a
policy maker would want to know when a recovery begins and so is interested
in forecasts of output growth at multiple horizons. Similarly, fixed-income
investors are interested in comparing forecasts of spot rates multiple periods
ahead in time against current long-term interest rates in order to arrive at
an optimal investment strategy, and stock market investors could consider
the effect of demographic variables on expected returns and risks at both
medium and long investment horizons (Favero and Tamoni, 2010).

Two very different strategies have been proposed for generating multi-
period forecasts. The first approach is to estimate a dynamic model for
data observed at the highest available frequency, e.g. monthly, and then use
the chain rule to generate forecasts at longer horizons. Under this iterated
or indirect approach, the model specification is the same across all forecast
horizons; only the number of iterations changes with the horizon. Univariate
ARMA models or their multivariate VARMA equivalent, are usually used in
the iterations. The second approach is to estimate a separate model for
each forecast horizon, regressing future realizations on current information.
Such direct forecasts dispense with the need for forward iteration. Under
this approach, both the model specification and estimates can vary across
different forecast horizons.

Both approaches have advantages and drawbacks. For a given model
specification the iterated approach leads to more efficient parameter esti-
mates since it includes data recorded at the highest available frequency and
so uses the largest available sample size. If the model is misspecified, due,
for example, to an omitted variable or because of an incorrect lag order, iter-
ating the model multiple steps ahead can either attenuate or reduce existing
biases. Direct forecasts are less efficient, but also more likely to be robust
to model misspecification as they are typically linear projections of current
realizations on past data. Direct forecasts introduce new problems, however,
due to the overlap in data when the forecast horizon exceeds a single period
which affects the covariance of the forecast errors.

Given the importance of the horizon to many forecasting problems, it
is not surprising that a substantial theoretical literature has considered the
multi-step forecasting problem, including Bao (2007), Cox (1961), Brown and
Mariano (1989), Clements and Hendry (1998), Findley (1983), Hoque, Mag-
nus and Pesaran (1988), Ing (2003), Schorfheide (2005), and Ullah (2004),
with Bhansali (1999) and Chevillon (2007) providing surveys. This literature
has examined the bias-efficiency trade-off in the context of specific models
such as stationary first-order or higher-order autoregressive models. Whether
the direct or iterated approach can be expected to produce the best forecasts
generally depends on the sample size, forecast horizon, the (unknown) un-
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derlying data generating process and the methods used to select lag length
for the forecasting models (Ing, 2003). In general, no approach can be shown
to uniformly dominate the other so, as pointed out by Marcellino, Stock and
Watson (2006) (MSW, henceforth), the relative merit of the iterated versus
direct forecast methods could vary across different economic variables and
so is ultimately an empirical question.

For multivariate forecast models additional issues complicate the com-
parison of the direct and iterated forecast approaches. First, it becomes
important how the potentially high-dimensional variable selection search is
conducted and, by extension, how multi-step forecasts of any additional pre-
dictor variables are generated under the iterated approach. For multivariate
specifications of even modest dimension, a global model specification search
very rapidly becomes intractable unless the problem is further constrained.
With d potential regressors, there are 2d different linear models and with d
easily in the hundreds it is infeasible to evaluate every possible model. To
deal with this dimensionality problem, we propose a factor-augmented VAR
approach to iterated forecasting that builds on the work by Bernanke, Boivin
and Eliasz (2005) and Stock and Watson (2005). This limits the model spec-
ification search to consider inclusion of only a few common factors extracted
from different categories of economic variables. In addition to past values
of the predicted variable itself, relatively few potential predictors therefore
need to be considered.

A second issue that has not previously received much attention in this
context is the serial correlation in the errors of the direct forecast models,
which arises due to the use of overlapping data. This raises issues at both the
estimation and model selection stages. In the estimation stage we propose
a SURE estimation approach that reorganizes the data in non-overlapping
blocks of observations spaced apart by the length of the forecast horizon. We
show how to compute the resulting covariance matrix under this approach
which holds the potential of efficiency gains over conventional direct fore-
casts. In the model selection stage we propose modifications to the Akaike
information criterion that account for serial correlation in residuals from the
forecast models. Monte Carlo simulations confirm that the modifications to
the AIC and the SURE estimation approach both lead to improvements in
the performance of the direct forecast models.

In an empirical exercise we consider the 170 variables studied by MSW.
We confirm their finding that the iterated forecasts are best overall among
the univariate forecasting methods, particularly at long horizons where the
inefficiency of the direct forecasting method is most prominent. Further-
more, we find that forecasts generated by factor-augmented VARs generally
perform better than the univariate forecasts, an important exception being
variables tracking prices and wages. This suggests that it is helpful to ex-
tend the forecasting models beyond purely univariate schemes and include
the multivariate information embedded in common factors. Among the direct
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forecasts, in the majority of cases the modified Akaike information criteria
and the SURE approach both help improve forecasting performance.

In summary, the main contributions of the paper are as follows: First, we
propose a factor-augmented forecast approach that extends univariate iter-
ated methods to the multivariate setting. Second, we propose a new SURE
estimation method that accounts for the data overlap that arises at multi-
period horizons under the direct forecast approach. Third, we extend the
AIC to account for the overlap introduced by the direct forecasting method
which affects the covariance of the forecast errors and so can lead to differ-
ent models being chosen in small samples. Fourth, we study the forecasting
performance of both extant and new estimation, model selection, and fore-
casting methods through Monte Carlo simulations. Finally, we present an
empirical application that considers recursively generated forecasts of the
economic variables included in the study by MSW and extends their study
to a multivariate setting.

The outline of the paper is as follows. Section 2 sets up the multi-period
forecasting problem for univariate and multivariate cases, while Section 3
deals with model selection and estimation issues. Section 4 presents Monte
Carlo results, while Section 5 describes our empirical findings using the Mar-
cellino et al. data set. Section 6 concludes.

2 Methods for Multi-period Forecasting

Suppose a forecaster is interested in predicting a K × 1 vector of variables
yt+h = (y1,t+h, y2,t+h, . . . , yK,t+h)′ by means of their own past values and the
past values of an additional set of M potentially relevant predictor variables,
xt = (x1t, x2t, . . . , xMt)′. Typically K is small, often one or two, but M could
be very large.

The forecaster’s horizon, h, could be a single period, h = 1, or could
involve several periods, h > 1. Iterated forecasts use a single model fitted
to the shortest horizon and then iterate on this model to obtain multi-step
forecasts. Direct forecasts regress realizations h periods into the future on
current information and, therefore, estimate and select a separate forecasting
model for each horizon.

For purposes of calculating one-step-ahead forecasts under the iterated
approach, the regressors are treated as conditional information and so how
they are generated is not a concern. This also holds under the direct forecast-
ing approach irrespective of the forecast horizon. In contrast, when applying
the iterated forecasting approach to multi-period horizons, h > 1, the regres-
sors themselves need to be predicted since such values in turn are required
to predict future values of yt. We next show how this can be done using
factor-augmented VAR models.
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2.1 Multi-step Forecasts with Factor-Augmented VARs

In cases where M is relatively small one approach is to treat all variables
simultaneously, i.e., model (y′t, x′t)′ jointly. Multi-period forecasts of yt can
then be obtained by iterating on a VAR of the form

(
yt

xt

)
=

(
µy

µx

)
+ Λ(L)

(
yt−1

xt−1

)
+ ψt, (1)

where Λ(L) is a matrix lag polynomial of finite order. In the common situa-
tion where M is large while the time-series dimension of the data is limited,
this approach is unlikely to be successful due to the high dimension of Λ(L),
particularly the parts tracking dynamics in the large-dimensional vector xt.

To deal with this issue, a conditional factor-augmentation approach can
be used. Under this approach, the large-dimensional xt-vector is condensed
into a subset of factors, f t, of dimension m < M , that summarize the salient
features of the large-dimensional data. A factor-augmented VAR (FAVAR)
based on the variables zt = (y′t, f

′
t)
′ can then be used:

zt = µz +
(

Ap(L) Bq(L)
0 Ds(L)

)
zt−1 + ξt, (2)

where the finite-order matrix lag polynomials are

Ap(L) = A0 + A1L . . . + Ap−1L
p−1,

Bq(L) = B0 + B1L + . . . + Bq−1L
q−1,

Ds(L) = D0 + D1L + . . . + Ds−1L
s−1.

Notice the asymmetric treatment of yt and f t under this approach: future
values of the factors are generated using only current and past values of the
factors themselves. The y-variables are therefore not used to predict the
factors, while the factors are used to predict the y-variables.

For illustration, suppose that the K × 1 vector of target variables, yt, is
generated according to the following factor model

yt = µ + Ayt−1 + Bf t−1 + ut, t = 1, 2, . . . , T, (3)

ut ∼ iid(0,Σ),

where f t is a vector of unobserved common factors, while µ, A, B, and Σ
are unknown coefficient matrices.

Using this model to predict yt+h given information at time t requires
a forecast of the factors whenever h ≥ 2. Despite the dynamic nature of
the above model, we follow Stock and Watson (2002) and estimate f t by the
principal component (PC) procedure, although one could equally employ the
dynamic factor approach of Forni et al. (2005). A key question when using
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factor models is the choice of the number of factors. This can be determined,
for example, by using the information criteria (IC) proposed by Bai and Ng
(2002). In practice there is considerable uncertainty surrounding the number
of factors to be used, and as pointed out by Bai and Ng (2009), the use of
IC is based on the assumption that the factors are ordered as predictors of
the regressors xt, an ordering that might not be appropriate for predicting
yt.

In view of these concerns we adopt a hierarchical approach where we first
divide all variables into economically distinct groups and then select the first
PC from each of the categories. All the computations are carried out recur-
sively with rolling estimation windows of length w, so no future information
is used in the construction of the factors. We denote the recursively esti-
mated PCs by f̂ t, t = R, R+1, . . . , T −h, where t is the point in time where
the factors are computed, R ≥ w is the time at which the first forecast is
made, and T is the total sample length. Hence, at time t we use data over
the sample t− w + 1, t− w + 2, . . . , t to extract f̂ t.

Only those factors that help predict yt are relevant and should be in-
cluded in the model. This may be a subset, f̂1t, of the full set of factors,
f̂ t, under consideration. One then has to choose whether to use the full set
of factors f̂ t = (f̂1t, f̂2t) to predict the subset of factors, f̂1t, selected when
forecasting yt+h, or whether to use only lagged values of f̂1t to predict their
future values. The choice could depend on the number of available factors.
In the empirical application below where we consider five factors we use all
factors to forecast future values of f̂1t.

To generate iterated multivariate forecasts we first select the relevant
subset of factors and the lag lengths p and q using the conditional model:

yt = µy + Ap(L)yt−1 + Bq(L)f̂ t−1 + ut. (4)

We determine the lag orders p and q and the subset of m1 factors from the
total set of m factors by applying IC to the likelihood of yt.

For simplicity, we obtain forecasts only from the full set of m = m1 +m2

factors. Hence we first select a VAR(s) model in f̂ t where the value of s is
determined by some IC, again applied recursively:

f̂ t = µf + Ds(L)f̂ t−1 + εt. (5)

Next, to compute iterated h−step-ahead forecasts of yt, we simply combine
the conditional and marginal models:

yt = µy + Ap(L)yt−1 + Bq(L)f̂ t−1 + ut,

f̂ t = µf + Ds(L)f̂ t−1 + νt,

which, recalling that zt = (y′t, f̂
′
t)
′ and ξt = (u′t,ν ′t)′, is consistent with

Eq. (2). Notice that the selection of factors in the conditional model (4) is
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reflected in zero-restrictions on B1, B2, . . . , Bq, where the columns corre-
sponding to the factors that are not selected are set to zeros. The factor-
augmented VAR in zt can then readily be iterated forward.1

Direct h−step-ahead forecasts of yt are based on the following specifica-
tion:

yt = µyh + Aph(L)yt−h + Bqh(L)f̂ t−h + uth.

Univariate forecasts arise as a special case of these multivariate forecasts.

3 Estimation and Model Selection

Two important econometric issues arise in the context of multi-period fore-
casting. First, the direct forecast models introduce overlaps in the observa-
tions and give rise to a particular dependence structure which, if imposed
on the estimation, could lead to efficiency gains. Second, for both iterative
and direct forecasts, how a particular model is chosen by the forecaster is of
great importance given the large dimension of the set of potentially relevant
predictor variables. In this section we discuss both issues, first presenting a
new SURE estimation procedure that may lead to efficiency gains and next
considering a variety of information criteria, including modified ones that
deal with serial dependence in the errors.

3.1 Estimation

Overlaps in the data associated with the direct forecast models introduce
serial dependence in the errors. Even if the underlying errors are serially
uncorrelated, the errors associated with an h-period overlap typically follow
an MA(h− 1) process. This suggests that estimating VARMA models could
be beneficial. We do not follow this direction for two reasons. First, estima-
tion of VARMA models is not a very common undertaking in the forecasting
literature and thus goes against our focus on evaluating forecasting meth-
ods in common use. Second, VARMA models have stability and convergence
problems for the types of multivariate models considered in our paper, which
can be of large dimension, and require extensive specification searches; see
Athanasopoulos and Vahid (2008) for further discussion of these points.

Instead, we propose using SURE estimation which leads to some effi-
ciency gains as it exploits the information of the MA structure of the error
even if it implies a more heavily parameterized model. Consider estimation
of the following direct forecast model

yt = β′zt−h + ut, t = 1, 2, . . . , T, (6)
1Alternatively, one could model only the factors that have been selected in the condi-

tional specification in Eq. (4). This may be less efficient than using the full VAR in Eq. (5),
but a smaller number of parameters needs to be estimated from a finite number of obser-
vations. It is therefore not clear a priori which approach will perform better.
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and suppose that ut follows an (h− 1) order moving average process

ut = εt + θ1εt−1 + θ2εt−2 + . . . + θh−1εt−h+1, εt ∼ iid(0, σ2). (7)

The regressors, zt−h, include yt−h, yt−h−1, . . . , yt−h−p for some order p, and
estimated factors dated t− h or earlier, i.e. f̂ t−h, . . . , f̂ t−h−q.

When the direct regression is derived from an underlying VAR in yt and
f̂ t the regression coefficients, β, and the MA coefficients θ = (θ1, θ2, . . . , θh−1)′

are related, and fully efficient estimation of Eq. (6) must allow for such
cross-parameter restrictions. This type of restrictions can be implemented
by assuming that β and θ are both functions of a set of deeper parameters,
φ, with estimation of β(φ) and θ(φ) carried out directly in terms of φ.
Imposing such restrictions on the system of direct forecasting models sim-
ply helps recover the original parameter values from the iterated forecasting
model. Since the latter efficiently uses data at the highest frequency, max-
imum likelihood estimates from joint estimation of the mutually consistent
h-step direct forecasting models is identical to estimation of the parame-
ter estimates from the one-step-ahead model, which of course is far more
easily achieved. In scenarios where the direct forecast would dominate the
iterated forecast, e.g., because the forecasting model is misspecified, using
the parameters of the iterated forecast model for the covariance matrix may
be undesirable. As for the model parameters, it may therefore be better
to estimate the covariance matrix directly without imposing the parameter
restrictions on the iterated forecast.

Asymptotically efficient estimates of β can be computed by applying
maximum likelihood directly to the overlapping regressions for t = 1, 2, . . . , T ,
allowing for the MA(h − 1) process of the errors. Alternatively, one could
consider estimating β from pooled regressions of h non-overlapping regres-
sions. Suppose that the estimation sample, w, is an exact multiple of h
and set n = w/h. Let z̃ij = yt−w+j+(i−1)h and decompose the overlapping
regressions in Eq. (6) into the following h non-overlapping regressions

z̃ij = β′wi−1,j + vij , for i = 1, 2, . . . , n, and j = 1, 2, . . . , h, (8)

where wi−1,j = zt−w+j+(i−1)h−h, and vij = ut−w+j+(i−1)h. When h = 2, we
have two non-overlapping regressions: one for the odd observations, z̃i1, and
another for the even observations, z̃i2, for i = 1, 2, . . . , n.

For each j the errors vij are serially uncorrelated across i and the least
squares regression of z̃j = (z̃1j , z̃2j , . . . , z̃nj)′ onWj = (w0j ,w1j , . . . ,wn−1,j)′

yields a consistent estimate of β which we denote by β̂j . However, this
estimate is not efficient and a pooled estimate that utilizes all the h non-
overlapping regressions can be more efficient. The estimates across the h
non-overlapping regressions can be pooled in a number of ways, e.g., with a
simple or a weighted average of β̂j , over j = 1, 2, . . . , h, with weights based
on the relative precision of the different estimates.
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Alternatively, the h regressions in Eq. (8) can be viewed as a set of
seemingly unrelated regression equations (SURE), allowing for the cross de-
pendence of the errors vij across j for each i . Specifically, consider the
regressions

z̃j = Wjβ + vj , for j = 1, 2, . . . , h, (9)

which in stacked form can be written as

z̃ = Wβ + v,

where z̃ = (z̃′1, z̃
′
2, . . . , z̃

′
h)′, W = (W′

1,W
′
2, . . . ,W

′
h)′, and v = (v′1,v

′
2, . . . ,v

′
h)′.

To derive the covariance matrix of v we first note that vj = (ut−w+j , ut−w+j+h,
ut−w+j+2h, . . . , ut−w+j+(n−1)h)′, and denote the autocovariance of {ut}, which
follows an MA(h − 1) process, by γ(s), where γ(s) = γ(−s) = 0 for s ≥ h.
It is now easily seen that

E(vjv′j) = γ(0)In,

where In is an identity matrix of order n. Similarly, if 0 < s− r < h,

E(vrv′s) ≡ Ψrs =



γ(s− r) 0 0 · · · 0 0
γ(h− s + r) γ(s− r) 0 · · · 0 0

0 γ(h− s + r) γ(s− r) · · · 0 0
...

...
...

...
...

...
0 0 · · · γ(h− s + r) γ(s− r) 0
0 0 · · · 0 γ(h− s + r) γ(s− r)




,

while if 0 < r − s < h,
E(vrv′s) ≡ Ψrs =




γ(r − s) γ(h− r + s) 0 · · · 0 0
0 γ(r − s) γ(h− r + s) · · · 0 0
0 0 γ(r − s) · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 γ(r − s) γ(h− r + s)
0 0 · · · 0 0 γ(r − s)




.

Therefore, the covariance matrix of v is given by

Σv(θ) =




γ(0)In Ψ12 Ψ13 · · · Ψ1h

Ψ21 γ(0)In Ψ23 · · ·
...

...
...

Ψh−1,1 Ψh−1,2 · · · γ(0)In Ψh−1,h

Ψh1 Ψh2 · · · Ψh,h−1 γ(0)In




. (10)
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The log-likelihood function of the SURE specification is now given by

`(β,θ) ∝ −1
2

ln |Σv(θ)| − 1
2
(z̃−Wβ)′Σ−1

v (θ)(z̃−Wβ). (11)

The unknown parameters can be obtained by maximization of the log-likelihood
function:

β̂SURE =
[
W′Σ−1

v (θ)W
]−1 W′Σ−1

v (θ)z̃. (12)

This maximum likelihood procedure is equivalent to the maximum likelihood
estimation of the original overlapping regression in Eq. (6) with errors fol-
lowing the MA(h− 1) process (7). To see this, let y = (y1, y2, . . . , yT )′, and
note that since the elements of z are selected from the elements of y without
repetition, there exists a non-singular T × T selection matrix P such that
z̃ = Py. Hence the log-likelihood functions based on y and z̃ must be the
same, and the covariance matrix in Eq. (10) is equivalent to using a GLS
covariance matrix after reordering the observations.

Maximum likelihood estimation of β under the SURE approach sug-
gests intermediate procedures that are computationally less extensive and
relatively easy to implement. One possible approach would be to estimate
Σv(θ) using consistent estimates of γ(s) obtained from ût = yt − β̂

′
LSzt−h

where β̂LS is the first-stage least squares estimate of β computed from the
overlapping regressions. Hence2

γ̂(s) =

T∑
t=1

ûtût−s

T
, for s = 0, 1, 2, . . . , h. (13)

Alternatively, we could apply the standard SURE estimation to Eq. (9)
subject to the restrictions βj = β for all j = 1, 2, . . . , h and use the covari-
ance matrix Σh ⊗ IT/h, where Σh is the covariance matrix of the SURE
system (9) without accounting for the restrictions in Eq. (10). This proce-
dure provides an efficient way of pooling the h different consistent estimates
of β but does not take account of the specific form of the cross dependence
of the errors from the different non-overlapping regressions. Monte Carlo ex-
periments not reported here but available from the authors suggests that this
leads to an inferior forecast performance and will therefore not be further
considered.

In the Monte Carlo simulations and empirical analysis we use the first
approach and the likelihood function in Eq. (11) to calculate the information
criteria. γ(s) is estimated using least squares residuals as in Eq. (13) and
down-weighted by (1 − s

h). To robustify the calculation of the forecasts,
one can use the SURE approach in the model selection stage, but then use
OLS estimation for the selected model. Numbers reported in subsequent

2For relatively large values of h, the estimates of γ̂(s) can be down-weighted using
Bartlett or Parzen weights.
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tables are based on this combination, but results are very similar without
this modification.

3.2 Model Selection

We consider two model selection criteria, namely the AIC and BIC. Both
are commonly used in forecasting studies and have well known properties:
AIC achieves a good approximate model as the sample size expands even if
the true model is not contained in the set of models under consideration.
However, it is not a consistent criterion and so does not select the true
model with probability one, asymptotically, if it happens to be included in
the search. In contrast, BIC is a consistent model selection criterion if the
true model is one of the models under consideration.

The iterated and the direct forecast models can be selected either on
the basis of single equations or using a system of equations. For the direct
forecasting models an additional decision has to be made whether to correct
for the overlap in the observations that affects the sample covariance matrix
of the forecast errors.

3.2.1 Iterated Forecasts

Individual models in the specification search select different subsets of zt−1 =
(y′t−1, f̂ ′t−1)

′. We consider the following standard criteria. First, we apply
AIC or BIC recursively to the single equation (K = 1) containing the variable
of interest, i.e., at time t, for a particular model we have:

AICtw = ln[û′twûtw/(w − 1)] +
2d

w − 1
, (14)

BICtw = ln[û′twûtw/(w − 1)] +
d ln(w − 1)

w − 1
,

where d is the dimension of the vector containing the subset of zt−1 selected
by the model under consideration, û′tw is a (w − 1) × 1 vector of estimated
residuals from the rolling-window estimation with typical element ûτ = y1τ−
β̂
′
tzτ−1, for τ = t−w+2, t−w+3, . . . , t, and β̂t is estimated using the most

recent w observations up to period t.3

Similarly, for K > 1, we have

AICtw = ln |Σ̂tw|+ 2Kd

w − 1
(15)

BICtw = ln |Σ̂tw|+ Kd ln(w − 1)
w − 1

3For simplicity, we refer to zτ−1 as comprising both the most recent lag as well as any
additional lags. This notation therefore corresponds to using the companion form of the
model.
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where Σ̂tw is the K ×K estimated error covariance matrix

Σ̂tw =
1

w − 1
[
Y ′

twY tw − Y ′
twZt−1,w(Z ′

t−1,wZt−1,w)−1Z′t−1,wY tw

]
,

Y tw is the (w − 1) × K matrix of stacked yτ = (y1τ , y2τ , . . . , yKτ )′, and
Zt−1,w is the observation matrix formed by stacking zt−1,w over the w − 1
observations indexed by τ = t−w+2, t−w+3, . . . , t. These are all standard
expressions.

3.2.2 Direct Forecasts

The direct forecast models that are not based on the SURE system in Eq. (9)
are selected based on either AIC or BIC

AICtwh = ln[û′twhûtwh/(w − h)] +
2d

w − h
,

BICtwh = ln[û′twhûtwh/(w − h)] +
d ln(w − h)

w − h
, (16)

where ûtwh is a (w−h)×1 vector of estimated residuals with typical element
ûτ = y1τ − β̂

′
tzτ−h, for τ = t − w + 1 + h, . . . , t, when K = 1 or the

equivalent of Eq. (15) when K > 1. For h > 1, the overlap in the forecasts
will produce autocorrelation in the residuals. This should be accounted for
in small samples when calculating the information criteria. Here we consider
two ways to calculate the corrections for the case where K = 1.

To motivate these, assume that the h−step forecast model takes the form
in Eq. (6) estimated using the observations τ = t − w + 1, t − w + 2, . . . , t,
and denote the least squares criterion for estimating β by

Q(β) =
1

2σ2
u

(ytwh −Ztwhβ)′(ytwh −Ztwhβ),

where σ2
u = Var(ut), ytwh = (yt−w+1+h, . . . , yt)′, and Ztwh = (zt−w+1, . . . ,zt−h)′.

Let Q0(β) = E[Q(β)], where expectations are taken conditional on Ztwh

and with respect to the true conditional density of ytwh, and denote the jth

derivative of Q(β) by Q(j)(β). Moreover, let β0 be the true value of β, and
its estimate given by β̂ = arg minβ [Q(β)]. Using these notations, we have
that Q

(1)
0 (β0) = 0, Q(1)(β̂) = 0, Q(2)(β) = Q

(2)
0 (β0) = 1

σ2
u
Z ′

twhZtwh.

Define Q0(β̂) as the loss incurred by using the estimated parameter β̂
instead of the unknown true parameter, β0. Note that Q0(β̂) is obtained
by replacing β in Q0(β) with β̂. It is easily verified that because the oper-
ations of taking expectations and replacing an unknown parameter with its
estimator do not commute, in general, E

[
Q0(β̂)

]
6= E

[
Q(β̂)

]
.
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Consider the following second order Taylor expansions

Q0(β̂) = Q0(β0) +
1
2
(β̂ − β0)

′Q(2)
0 (β0)(β̂ − β0),

Q(β̂) = Q(β0) + (β̂ − β0)
′Q(1)(β0) +

1
2
(β̂ − β0)

′Q(2)
0 (β0)(β̂ − β0).

These expressions are exact for the quadratic loss function considered here
for convenience, but can be seen to hold approximately for a general log-
likelihood specifications remainder terms being of lower orders in t, under
certain standard regularity conditions. Taking expectations of these two
equation yields

E
[
Q0(β̂)

]
= Q0(β0) +

1
2
E

[
(β̂ − β0)

′Q(2)
0 (β0)(β̂ − β0)

]
,

and

E[Q(β̂)] = E[Q(β0)] + E[(β̂ − β0)
′Q(1)(β0)] +

1
2
E[(β̂ − β0)

′Q(2)
0 (β0)(β̂ − β0)]

= Q0(β0) + E[(β̂ − β0)
′Q(1)(β0)] +

1
2
E[(β̂ − β0)

′Q(2)
0 (β0)(β̂ − β0)].

Therefore
E[Q0(β̂)−Q(β̂)] = −E[(β̂ − β0)

′Q(1)(β0)].

Furthermore
(β̂ − β0) = −[Q(2)(β0)]

−1Q(1)(β0),

and hence (for a given set of regressors)

−E[(β̂ − β0)
′Q(1)(β0)] = E[tr(σ−2

u u′twhZtwh(Z
′
twhZtwh)−1Ztwhutwh)]

= tr
[
σ−2

u (Z
′
twhZtwh)−1Z ′

twhE
(
utwhu′twh

)
Ztwh

]
,

where utwh = (ut−w+1+h, . . . , ut)′. If the errors utwh were iid, this would
give the standard penalty term K. However, for overlapping forecasts the
errors will be autocorrelated and the expression will not collapse to K in
small samples.

Building on this result, we first consider a band diagonal modified AIC
that takes the form

AICΠ̂S
= ln[û′twhûtwh/(w − h)] +

2tr
(
Π̂S

)

w − h
, (17)

where
Π̂S = (Z ′

twhZtwh)−1Z ′
twhShZth/h.
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Sh is a matrix with h on the diagonal, h− 1 on the first diagonal above and
below the main diagonal, h− 2 on the second diagonal above and below the
main diagonal etc., i.e.

Sh =




h h− 1 h− 2 . . . 0
h− 1 h h− 1 . . . 0

h− 2 h− 1 1
...

...
. . . h− 1 h− 2

0 . . . h− 1 h h− 1
0 . . . h− 2 h− 1 h




.

This formulation aims at capturing the MA(h− 1) form of the error process
in the overlapping regressions but assumes that the serial correlation in the
underlying (non-overlapping) observations is negligible.

The second approach uses an estimated covariance matrix. In particular,
we use the Newey-West (1987) covariance matrix to obtain the correction.
This yields the modified AIC:

AICΠ̃ = ln[û′twhûtwh/(w − h)] +
2tr

(
Π̃

)

w − h
, (18)

where Π̃ = Σ̂
−1
zz Ω̂, Σ̂zz = σ̂2

u

(
Z′twhZtwh

w−h

)
, Ω̂ is the long-run variance of

the residuals as estimated by the Newey-West covariance matrix with the
bandwidth set to min(h,w1/3).

When selecting the models based on the SURE system in Eq. (9), stan-
dard formulations of AIC and BIC with likelihood (11) can be used. The
unknown parameters of the covariance matrix need not be included in the
penalty term because models are compared only for the same forecast hori-
zon, so the number of parameters in the covariance matrix will be the same
across models.

Schorfheide (2005) proposes a related selection criterion based on the
weighted sum of mean squared prediction errors adjusted for a term that
penalizes for estimation inefficiencies resulting from high dimensional fore-
casting models. Although Schorfheide’s criterion is closely related to the
AIC, the penalty term in his approach captures prediction risk and is differ-
ent from the penalty term used here.

4 Monte Carlo Simulations

We next turn to Monte Carlo simulations as a means to evaluate the perfor-
mance of the various model selection and estimation approaches under two
data generating processes (DGPs). For both DGPs we consider situations

14



with a single target variable, K = 1, and m factors which yields the following
VAR model for zt = (y1t, f1t, . . . , fmt)′:

(
y

(b)
1t

f
(b)
t

)
=

(
αρ αγ ′

0 A

)(
y

(b)
1,t−1

f
(b)
t−1

)
+ ε

(b)
t , ε

(b)
t ∼ N(0,Σm+1). (19)

Here b = 1, 2, . . . , B tracks the replications in the Monte Carlo experiments.
We set Σm+1 to a block-diagonal matrix, where the first block corresponds
to the target variable and the second block to the m×m covariance matrix
of the factors. The goodness of fit of the prediction equation (the first row
of Eq. (19)) is controlled by the parameters α, ρ, γ, A and Σm+1. We
set α such that the population R2 for y1t, denoted R2

y, is either 0.2 or 0.8,
representing low and high predictability scenarios, respectively. Assuming
that the eigenvalues of A lie inside the unit circle, it is readily seen that
Cov(f (b)

t ) = Im provided that the part of the covariance matrix Σm+1 that
corresponds to the factors is set to (Im −AA′). From Eq. (19) we see that

R2
y =

α2ρ2 + α2 (γ ′γ) /σ2
ε1

1 + α2 (γ ′γ) /σ2
ε1

,

where σ2
ε1

is the variance of the innovation to y1t. For a given choice of R2
y,

ρ and γ we then have (setting σ2
ε1 = 1)

α2 =
R2

y

ρ2 + γ ′γ(1−R2
y)

.

In practice, the factors are unobserved and forecasters will extract estimates
of these from a panel of observed variables. We generate Mj variables for
each factor j, j = 1, 2, . . . m, in a hierarchical fashion, which corresponds to
the estimation of the factors in the empirical analysis,

x
(b)
jit = λjif

(b)
jt + ψ

(b)
jit , ψ

(b)
jit ∼ N(0, 1), i = 1, 2, . . . ,Mj , j = 1, 2, . . . , m,

where Mj = 30 for all j. λji is set such that R2
jx = 0.5 in the low predictability

scenario and 0.8 in the high predictability scenario:

R2
jx =

λ′jλj

1 + λ′jλj
, j = 1, 2, . . . , m,

where λj = (λj1, λj2, . . . , λjMj )
′.

Data are generated for window sizes of w = 60, 120, and 240 observations
which in turn are used to compute forecasts for period w + h. We consider
forecast horizons of h = 1, 3, 6, 12, and 24 periods.
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Data Generating Process 1

The first DGP assumes that all variables contain useful information for pre-
dicting the variable of interest (always the first variable) and so the one-
step-ahead forecast should select all variables. Moreover, we set m = 2 and
choose the remaining parameters as follows

C ≡
(

ρ γ ′

0 A

)
=




0.8 0.5 0.5
0 0.5 0
0 0 0.8


 ,

so that both f1 and f2 help predict y1, but f1 and f2 are in turn not them-
selves predictable by means of past values of y1. Moreover, f2 is quite per-
sistent while f1 is not, suggesting that for large values of h, f2 should play
more of a role in forecasting y1 than f1.

Data Generating Process 2

Under the second DGP, iterated multi-step forecasts can be expected to
be inefficient because they select models that produce good one-step-ahead
forecasts and factors in the DGP are only helpful for longer horizon forecasts.
Specifically, the parameters for the second DGP are set to m = 3 and

C ≡
(

ρ γ ′

0 A

)
=




0.1 0.5 0 0
0 0.2 0.6 0
0 0 0.2 0.6
0 0 0 0.75


 .

Notice that f1 helps predict y1, but f1 is in turn not itself predictable by
means of past values of y1. Moreover, f2 neither predicts nor is predicted
by y1 but f2 predicts f1 and therefore may help predict y1 over medium
horizons. Finally, the most persistent factor, f3, indirectly helps predict y1

through its ability to predict f2.

4.1 Forecasts

We generate forecasts from both univariate and multivariate models. The
univariate forecasts are based on AR models with lag length up to pmax =
12. The multivariate models consider all regressors in the DGPs with the
maximum lag length restricted to pmax = 2.

In each case forecasts are based on the model selected by one of the cri-
teria discussed in the previous section. Iterated forecasts are then calculated
as follows:

Ẑ
(b)∗
t+h|t =

[
Im+1 + Ĉ(b) + · · ·+

[
Ĉ(b)

]h−1
]

µ̂ +
[
Ĉ(b)

]h
Z

(b)∗
t , (20)
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where Z
(b)∗
t = z

(b)∗
t if z

(b)∗
t includes y

(b)
1t or Z

(b)∗
t = (y(b)

1t , z
(b)∗
t ) if z

(b)∗
t does

not include y
(b)
1t . z

(b)∗
t is the subset of z

(b)
t chosen in the model selection

procedure, z
(b)
t = (y(b)

1t , f̂
(b)
1t , f̂

(b)
2t , . . . , f̂

(b)
mt ), and f̂

(b)
jt is the first principal com-

ponent extracted from the set of Mj regressors, x
(b)
jit, i = 1, 2, . . . , Mj . Ĉ(b)

is the estimate of C defined above for the bth Monte Carlo replication. The
iterated h-step ahead forecast of y

(b)
1t is denoted by ŷ

(b)
1,t+h|t.

Direct forecasts are obtained from

ỹ
(b)
1,t+h|t = µ̂h + β̂

′
hz

(b)∗
ht , (21)

where z
(b)∗
ht is the subset of regressors selected for the h-step ahead forecast.

Forecast errors are calculated as

ê
(b)
t+h = y

(b)
1,t+h − ŷ

(b)
1,t+h|t,

ẽ
(b)
t+h = y

(b)
1,t+h − ỹ

(b)
1,t+h|t. (22)

Forecasting performance is measured by the mean squared forecast error
(MSFE) computed as

MSFE =
1
B

B∑

b=1

[
e
(b)
t+h

]2
, (23)

where e
(b)
t+h is either ê

(b)
t+h or ẽ

(b)
t+h.

4.2 Summary of Monte Carlo Results

Results from the Monte Carlo simulations are reported in Tables 1 and 2. To
study how the degree of predictability affects the findings, each table contains
a panel with R2

y = 0.2 and R2
x = 0.5, and a panel with R2

y = R2
x = 0.8. The

former is closer to the empirical results that we obtain, while the second
scenario is more relevant for highly persistent variables.

First consider the results in Table 1 for the data generated under DGP1.
For both the univariate models and the FAVARs, the iterated approach dom-
inates the direct approach. This is a robust finding that holds across esti-
mation sample sizes (w = 60, 120, and 240), information criteria (AIC and
BIC), and forecast horizons (h = 3, 6, 12, and 24). In this case the per-
formance of the different methods can largely be explained by the effect of
parameter estimation error. The relative performance of the direct to the
iterated forecasts improves with the length of the estimation window, w, be-
cause it becomes less costly to use an inefficient estimation method in the
larger samples. Conversely, for a fixed estimation window, w, the relative
performance of the direct approach worsens as h increases because fewer ob-
servations are effectively available to estimate the parameters of the direct
forecast model.
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Turning to a comparison of the univariate and multivariate forecasts, un-
der the iterated approach FAVAR-models selected by the simple AIC or BIC
produce better forecasts on average than their univariate counterparts. The
dominance of the iterated FAVAR models selected by the AIC is more pro-
nounced in the high predictability scenario (R2

y = 0.8) where the parameters
of the model are more precisely estimated. Interestingly, the direct forecasts
from the FAVAR models only dominate the direct univariate forecasts in the
high predictability scenario.

For the longer horizons (i.e., h ≥ 6), the modifications to the AIC work
well as the data overlap becomes more pronounced and serial correlation
in the errors is attenuated. In particular, the band diagonal modified AIC,
defined by Eq. (17), improves over the simple direct AIC in three of six of
the FAVAR cases shown in Table 1 when h = 6, while this number rises to
five of six cases when h = 24. Interestingly, the band diagonal approach is
generally more successful at reducing the MSFE-values than the Newey-West
approach. The SURE approach provides an even better forecast performance
and improves in four of six cases over the simple direct AIC when h = 6 and
in all six cases when h = 24.

Turning to the second DGP, Table 2 now shows a few cases where the
direct FAVAR forecasts produce better performance than the best iterated
forecasts. It is clear from this DGP, however, that the degree of model
misspecification has to be quite large for this to happen. The table also
shows continued gains from using the SURE approach and the band diagonal
covariance adjustment to the conventional AIC.

5 Empirical Results

In their empirical analysis, Marcellino, Stock and Watson (2006) (MSW)
found that iterated univariate forecasts generally outperform direct univari-
ate forecasts. Furthermore, they found that the relative performance of the
iterated univariate forecasts improves with the forecast horizon.

MSW studied univariate and bivariate VARs with lag orders either fixed
or selected by AIC or BIC. Apart from the search over lag orders, they did
not, however, conduct a broad model specification search involving multivari-
ate models. Hence, it remains to be seen whether their findings change under
a broader model specification search. We consider this question using the
same data as in the MSW study which comprises 170 U.S. macroeconomic
time series measured at the monthly frequency over the period 1959-2002
(528 months).4

4We are grateful to Mark Watson for making this data set publicly available.
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5.1 Data Transformations

Following MSW, all variables are transformed by differencing a suitable num-
ber of times to achieve stationarity for estimation and model selection.5 In a
second step, forecasts are transformed back to levels and compared to level
variables. We briefly explain how the forecasts are computed under the direct
and iterated approaches using the autoregressive models as an illustration.

Denote the variables in levels by xt and differenced variables by yt. AR
forecasts can be computed as follows. Under the iterated approach, yt+h is
predicted and x̂t+h|t is constructed from xt and ŷt+h|t. The forecasts from
the AR model are based on the sample yt−w+1, yt−w+2, . . . , yt. Here yt = xt

if the variable is I(0), yt = ∆xt if the variable is I(1), and yt = ∆2xt if the
variable is I(2). For each variable we use the same order of integration as
MSW.

Under the iterated approach the forecast of xt+h is constructed from the
forecast of yt+h, xt, and ∆xt as follows

x̂t+h|t =





ŷt+h|t if xt is I(0)
xt +

∑h
i=1 ŷt+i|t if xt is I(1)

xt + h∆xt +
∑h

i=1

∑i
j=1 ŷt+j|t if xt is I(2)

.

Similarly, under the direct approach, the forecast of xt+h is constructed
from the forecast of yt+h, xt, and ∆xt as follows

x̂t+h|t =





ŷt+h|t if xt is I(0)
xt + ŷt+h|t if xt is I(1)
xt + h∆xt + ŷt+h|t if xt is I(2)

.

5.2 Setup

Forecasting is performed recursively, begins in 1979M1 (with a minimum
of w observations before forecasting) and runs until the end of the sample,
2002M12. This yields up to 286 forecasts for h = 3, and so on. Forecasts are
reported for horizons of h = 3, 6, 12, and 24 months. Two window lengths are
used for estimation, namely w = 120 and w = 240, that is, 10 and 20 years
of data. Fixing the window length allows us to better understand the role of
estimation error in the relative performance of the various approaches.

To address the effect of model selection on the multivariate forecasts, we
extract factors from the 170 series arranged into five groups, namely (A) one
factor for “income, output, sales, capacity utilization” (38 variables); (B) one
factor for “employment and unemployment” (27 variables); (C) one factor
for “construction, inventories, and orders” (37 variables); (D) one factor for

5We ignore structural breaks. See Pesaran and Timmermann (2005) for an analysis of
this in the case of forecasts from autoregressive models.
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“interest rates and asset prices” (33 variables); and (E) one factor for “nominal
prices, wages, and money” (35 variables).

To avoid any look-ahead biases, the factors are estimated recursively. We
then obtain forecasts of the factors from VARs fitted to all five factors with
lag orders chosen by AIC or BIC and pmax = 2. The search over FAVAR
models is thus conducted over specifications that include own lags as well as
those of the factors. The space of models is limited as follows. For the uni-
variate autoregressive models the possible lag lengths are p = 0, 1, 2, . . . , 12,
where p = 0 is an intercept only model. For the factor-augmented VAR
models we search across five factors with zero, one or two lags in addition to
an intercept. For computational simplicity the lag length is restricted to be
the same for yit and f̂it.

5.3 Forecasting Performance

Empirical results are summarized in Tables 3-9. We present MSFE-values
averaged across all 170 variables (Table 3) as well as subsets of these (Table
8). Since these could be dominated by extreme values for individual vari-
ables, we also report the proportion of cases (again out of the 170 variables)
where a modeling approach either dominates the benchmark univariate iter-
ated forecasting model selected by the AIC (Table 4), or an approach is best
overall for a given variable (Table 5). To evaluate statistical significance, we
conduct pairwise comparisons of the forecast precision of various approaches
against the benchmark univariate iterated models selected by the AIC using
the approach suggested by Giacomini and White (2006) (Table 7). Finally,
to understand whether the performance of a given forecasting approach is
driven by its bias or by imprecision in the forecasts, we report separately the
magnitude of the squared bias component in the MSFE (Tables 6 and 9).

5.3.1 Univariate Models

Table 3 shows the relative forecasting performance (measured by MSFE)
of the iterated and direct methods averaged over all 170 variables included
in the MSW data. The iterated univariate forecasts based on models se-
lected by the AIC are better on average than the direct ones, particularly
at long horizons (h = 12 and 24 months) and when the estimation window
is short (w = 120). Conversely, with a longer estimation window (w = 240)
the direct univariate forecasting models selected by the more parsimonious
BIC perform better than the iterated forecasts selected by this criterion.
To understand this, recall that the iterated forecasts are more efficient and
therefore tend to have a lower estimation error. Such errors are most impor-
tant for large models (AIC penalizes large models less than the BIC) and
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when the sample size is short.6

For the short estimation window (w = 120), the iterated models selected
by the AIC deliver the best average forecasting performance among the uni-
variate models. For the longer estimation window (w = 240), however, the
best forecasting performance for horizons of h = 3 and h = 6 months is pro-
duced by the direct forecast model selected by the AIC modified by using a
Newey-West covariance matrix. Once again the univariate iterated approach
based on the AIC dominates on average when h = 12 and 24 months. For
the direct univariate forecast models there is only very limited evidence that
the SURE estimation approach helps reducing average MSFE-values.

The average MSFE-values reported in Table 3 may be dominated by the
most volatile variables and could provide an incomplete picture of relative
forecasting performance. To deal with this, Table 4 shows the proportion
of the 170 variables for which the iterated univariate AR forecasts based
on models selected by the AIC generate a larger MSFE than the various
alternatives. We use the iterated univariate forecasts selected by the AIC as
our benchmark given the earlier evidence that this approach generally selects
good univariate models, a finding corroborated by the results reported by
MSW.

Among the univariate forecasts, for the short estimation window (w =
120), only the iterated forecasts based on models selected by the BIC produce
a majority of cases that outperform the iterated AIC, and only then for h = 3
or h = 6 months. With a longer estimation window (w = 240) the direct
forecasts based on the AIC, whether modified or not, also produce lower
average MSFE-values for the majority of variables at horizons of three and
six months.

Table 5 shows the proportion of cases (averaged across the 170 variables)
where each of the respective methods produces the lowest MSFE value.
Among the univariate approaches only the iterated AIC and the iterated
BIC produce a sizeable proportion of variables with the lowest MSFE-value,
particularly for the short estimation window (w = 120) and at the longest
forecast horizons.

From a theoretical perspective it is unclear whether the iterated approach
leads to greater (squared) biases than the direct approach. To shed empirical
light on this issue, Table 6 reports the squared forecast bias as a ratio of the
MSFE of the benchmark iterated univariate forecast models selected by the
AIC. For all methods the squared bias grows as a proportion of the MSFE of
the benchmark model when the forecast horizon is extended. Interestingly, at
short horizons (h ≤ 6) the squared bias component of the iterated forecasts
based on models selected by the AIC is slightly larger than that of the direct

6Univariate models selected by the AIC on average include three or four variables
for the short estimation sample and four or five variables in the longer sample. For the
univariate models selected by the BIC, this number declines to only one or two variables
in the small estimation sample and two variables on average in the longer sample.
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approaches, while conversely the relative bias of the iterated AIC models
is smaller at the two longest horizons (h = 12, 24). The iterated forecast
models selected by the BIC generate a comparatively large bias that exceeds
that generated by the direct forecast models selected by the BIC, suggesting
that the parsimony of these models comes at the expense of a larger bias.

5.3.2 Multivariate Models

Turning to the factor-augmented VAR models, Table 3 shows that the iter-
ated forecasts continue to do better on average than the direct FAVAR fore-
casts when a short estimation window (w = 120) is used. These results are
frequently overturned, however, when the long estimation window (w = 240)
is used. In the latter case, the direct forecasting method is better for fore-
cast horizons of h = 3, 6 and 12 months irrespective of which information
criterion is used, and also for h = 24 months under the diagonal modified
AIC method or the SURE estimation approach.7

For the factor-augmented models, Table 3 shows that the band-diagonal
modification to the AIC helps improve the average performance of the direct
forecasts across all horizons and for both estimation windows (w = 120 or
w = 240). The Newey-West modification is less consistent in improving on
the conventional AIC method. Moreover, in contrast with the univariate
models, the SURE approach generally improves the direct FAVAR forecasts,
particularly with a long estimation window (w = 240).

Comparing the average forecasting performance across both univariate
and multivariate models, at the shortest horizon (h = 3) the SURE method
combined with the BIC produces the lowest average MSFE-values when w =
120. Similarly, when w = 240, the direct forecast models estimated by SURE
produce the best performance for h = 3 and h = 6 months. In all other
cases, the univariate iterated forecast models selected by the AIC produce
the lowest average MSFE values. These results are somewhat dominated
by extreme cases, however. Table 4 shows that for a majority of the 170
variables the iterated FAVAR forecasts based on models selected by AIC
or BIC produce lower MSFE values than the univariate iterated forecasting
models selected by AIC.

Table 5 shows additional evidence that the iterated FAVAR models per-
form well. The multivariate iterated forecasting models selected by the AIC
or BIC produce the lowest MSFE-values for around 40% of the 170 vari-
ables. This is a greater share than is recorded by other methods, although
the SURE approach also performs well at the shortest horizon (h = 3).

Table 6 shows that the squared bias associated with the FAVAR models
7As expected, the multivariate models include more predictor variables than their uni-

variate counterparts. Under the AIC, on average five to seven regressors get included in
the small sample, rising to six to eight variables in the larger sample. Once again, the
BIC leads to somewhat smaller models with three to four predictor variables.
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tends to exceed the squared bias found for the univariate models. Moreover,
for the multivariate models the iterated approach tends to produce larger
biases than the direct forecast approach.

In conclusion, for the majority of variables the iterated FAVAR models
generate smaller forecast errors than the best univariate approach. There
is less evidence in favor of the direct forecasting models. Only for w =
240 and h = 3 or 6 months do we find that the direct approach leads to
comparable forecasting performance. Overall, these findings demonstrate
the value from utilizing multivariate information and also provide evidence
that our proposed refinements to standard information criteria work in many
cases.

5.4 Model Comparisons

Table 7 provides test results based on a formal comparison of the bench-
mark univariate iterated model selected by the AIC with the alternative
approaches listed in each row. Tests are based on the methodology advo-
cated by Giacomini and White (2006), which is ideally suited for our purpose
since we are conducting pair-wise model comparisons and use rolling window
estimators. The table lists the percentage of model comparisons for which
the null of equal predictive accuracy is rejected in a two-sided test conducted
at a 5% significance level against the alternative that the univariate iterated
models selected by the AIC are best or, conversely, that the alternative model
is best (listed in brackets).

The percentage of cases where the iterated univariate AIC method dom-
inates other univariate forecast methods generally grows with the forecast
horizon and is around 5 to 15% when h = 3 or h = 6 months and 10 to 20%
for h = 12 or h = 24 months. We find far fewer cases where the iterated
univariate forecasts selected by the AIC are rejected in favor of alternative
univariate methods.

These test results provide statistical evidence that the univariate iterated
AIC approach frequently performs significantly better than the other univari-
ate methods. Hence there is little evidence to prefer alternative univariate
methods.

Turning to the factor-augmented models, the evidence is generally less
clear-cut, with the proportion of significant cases where the iterated uni-
variate AIC forecasts are preferred over other approaches such as the direct
AIC forecasts, generally being more balanced, at least at the short horizon.
In most cases, however, the iterated univariate AIC forecasts continue to
reject alternative approaches more often than it gets rejected itself. Excep-
tions to this are the iterated FAVAR models based on either the AIC or BIC
which reject about as often as they themselves get rejected by the univariate
iterated models based on the AIC.

23



5.5 Results by Variable Categories

The empirical results turn out to be quite similar for four of the five cate-
gories of economic variables, namely (A) income, output, sales and capacity
utilization, (B) employment and unemployment, (C) construction, invento-
ries and orders, and (D) interest rates and asset prices. In contrast, quite
different results are obtained for the fifth category, (E), nominal prices, wages
and money. For this reason, Tables 8 and 9 present separate results averaged
across variables in categories A-D versus category E variables.

Table 8 shows that the benefit from using the multivariate factor-based
approach comes out very strongly for the first four categories. For these
variables, across almost all sample sizes and forecast horizons, the models
selected by the multivariate iterated AIC or BIC produce lower MSFE-values
than the univariate iterated AIC approach. Among the direct FAVAR fore-
casts the modified AIC and SURE methods perform quite well, particularly
with the long estimation window (w = 240.)

Across the first four categories of variables, the multivariate iterated ap-
proach based on the BIC performs best for the shortest estimation window
(w = 120) when h = 3, 6 or 12 months. When w = 240, the iterated FAVAR
approach based on the AIC generates the best results on average, except for
when h = 3 where the SURE approach is best. Table 9 shows that forecasts
based on these methods are only modestly biased.

In contrast, for the final group of variables, (E) nominal prices, wages and
money, the FAVAR approach strongly underperforms against the univariate
iterated AIC models. Iterated FAVAR models are particularly poor and are
outperformed by their direct counterparts. This suggests that the iterated
FAVAR models are heavily biased, a conjecture that is confirmed in Table 9
which reveals massive biases for the iterated FAVAR models at long horizons.
The biases associated with the direct forecast models are much smaller.

6 Conclusion

We compare the performance of iterated and direct forecasts generated by
univariate and multivariate (factor-augmented VAR) models. Our simu-
lations and empirical results show an interesting interaction between the
length of the estimation window, how strongly a particular model selection
method penalizes the inclusion of additional variables, the forecast horizon,
the method used to estimate model parameters and the relative performance
of the direct versus iterated approaches.

Like Marcellino, Stock and Watson (2006), our results suggest that there
is no single dominant approach and that the best forecasting method varies
considerably across economic variables. The iterated factor-augmented VAR
approach performs considerably better than the best univariate forecasting
approach for variables tracking income, output, employment, construction,
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interest rates and asset prices. Conversely, the univariate iterative models
dominate among variables tracking nominal prices, wages and money. For
such variables the factor-augmented iterated models produce heavily biased
forecasts.

Our empirical and simulation results suggest that the degree of model
misspecification has to be quite large for the direct forecasts to start dominat-
ing the iterated forecasts and that the forecasts generated by autoregressive
models of low order−whether factor-augmented or not−are difficult to beat
for most economic variables. This is a result of the (squared) bias component
generally playing a relatively minor role relative to the importance of param-
eter estimation error in the composition of MSFE-values. Consistent with
this, the iterated forecasting approach performs particularly well relative to
the direct approach when the sample size is small, when using an information
criterion such as the AIC that does not penalize additional parameters too
heavily and when the forecast horizon gets large.
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Table 3: Average forecasting performance measured by the MSFE relative to
the corresponding value generated by the univariate iterated forecast models
selected by the AIC
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 1.000 1.000 1.000 1.000 0.962 0.945 0.952 0.994
direct AIC 1.015 1.018 1.084 1.208 0.964 0.945 0.987 1.087
mod. AIC(diag) 1.013 1.017 1.106 1.202 0.964 0.944 0.982 1.097
mod. AIC(NW) 1.003 1.015 1.086 1.227 0.957 0.939 0.986 1.090
AIC(SURE) 1.017 1.028 1.081 1.190 0.985 0.997 1.058 1.106
iterated BIC 1.009 1.037 1.053 1.049 1.007 1.042 1.085 1.148
direct BIC 1.009 1.017 1.077 1.157 0.970 0.953 0.989 1.081
BIC(SURE) 1.007 1.026 1.087 1.150 0.993 1.024 1.069 1.093

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.977 1.032 1.075 1.069 0.974 1.028 1.058 1.117
direct AIC 0.985 1.045 1.129 1.252 0.949 0.995 1.049 1.134
mod. AIC(diag) 0.984 1.038 1.108 1.204 0.947 0.993 1.035 1.103
mod. AIC(NW) 0.981 1.046 1.133 1.259 0.948 0.992 1.046 1.141
AIC(SURE) 0.978 1.048 1.133 1.227 0.940 0.983 1.038 1.109
iterated BIC 0.974 1.015 1.046 1.086 0.983 1.041 1.083 1.156
direct BIC 0.981 1.018 1.106 1.223 0.960 0.998 1.043 1.117
BIC(SURE) 0.965 1.020 1.105 1.216 0.941 0.980 1.029 1.098
The table reports the MSFE of the different forecasts relative to the MSFE of the iterated
AR forecast based on the models selected by AIC with w = 120, where w is the length of the
estimation window. ‘AR’ results are based on univariate autoregressive models and ‘FAVAR’
results are based on multivariate factor-augmented VAR models. The MSFEs are calculated
only for those periods where forecasts from all methods are available. The forecasts labeled
‘mod. AIC(diag)’ and ‘mod. AIC(NW)’ are based on the modified AIC with band diagonal
or Newey-West covariance matrices. Forecasts ‘AIC(SURE)’ and ‘BIC(SURE)’ are based on
models that allow for autocorrelation in the likelihood function and use OLS estimates once
the model has been selected. Averages are computed across all 170 series in the Marcellino,
Stock and Watson (2006) data set.

Table 4: Proportion of variables for which individual forecast methods gener-
ate a lower MSFE than the corresponding values generated by the univariate
iterated forecast models selected by the AIC
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
direct AIC 0.441 0.429 0.218 0.176 0.518 0.506 0.359 0.235
mod. AIC(diag) 0.435 0.394 0.235 0.153 0.547 0.506 0.365 0.212
mod. AIC(NW) 0.500 0.418 0.229 0.165 0.547 0.506 0.365 0.235
AIC(SURE) 0.447 0.353 0.194 0.159 0.318 0.412 0.265 0.212
iterated BIC 0.541 0.535 0.482 0.471 0.512 0.424 0.388 0.424
direct BIC 0.412 0.418 0.200 0.165 0.447 0.429 0.324 0.241
BIC(SURE) 0.476 0.365 0.194 0.171 0.406 0.412 0.271 0.235

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.641 0.541 0.500 0.488 0.659 0.576 0.565 0.600
direct AIC 0.565 0.441 0.341 0.212 0.665 0.518 0.435 0.429
mod. AIC(diag) 0.565 0.465 0.371 0.271 0.647 0.535 0.441 0.459
mod. AIC(NW) 0.600 0.418 0.300 0.212 0.647 0.547 0.435 0.441
AIC(SURE) 0.582 0.412 0.306 0.194 0.671 0.547 0.418 0.447
iterated BIC 0.724 0.618 0.565 0.500 0.635 0.553 0.588 0.594
direct BIC 0.612 0.500 0.335 0.212 0.647 0.529 0.424 0.429
BIC(SURE) 0.641 0.476 0.341 0.218 0.676 0.571 0.441 0.447
The table reports the proportion of series for which the iterated AR forecasts based on the
models selected by AIC have larger MSFEs than forecasts based on the respective information
criteria. Hence, values above 0.5 suggest that the respective method dominates univariate AIC
forecasts for a majority of variables. For a description of the model selection methods see
the footnote to Table 3. Proportions are computed as averages across all 170 series in the
Marcellino, Stock and Watson (2006) data set.
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Table 5: Proportion of variables for which individual forecast methods produce
the lowest MSFE-values
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 0.041 0.094 0.124 0.206 0.071 0.094 0.129 0.165
direct AIC 0.018 0.029 0.029 0.006 0.035 0.035 0.035 0.024
mod. AIC(diag) 0.041 0.029 0.006 0.018 0.041 0.041 0.035 0.000
mod. AIC(NW) 0.071 0.065 0.035 0.041 0.041 0.076 0.035 0.018
AIC(SURE) 0.041 0.018 0.006 0.006 0.029 0.029 0.000 0.024
iterated BIC 0.065 0.106 0.135 0.106 0.053 0.035 0.059 0.024
direct BIC 0.024 0.024 0.047 0.012 0.006 0.024 0.006 0.018
BIC(SURE) 0.029 0.029 0.012 0.029 0.035 0.065 0.006 0.000

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.247 0.171 0.188 0.247 0.106 0.129 0.176 0.247
direct AIC 0.012 0.018 0.041 0.018 0.024 0.024 0.047 0.076
mod. AIC(diag) 0.018 0.035 0.053 0.059 0.024 0.035 0.053 0.094
mod. AIC(NW) 0.029 0.041 0.024 0.012 0.053 0.029 0.041 0.029
AIC(SURE) 0.059 0.047 0.006 0.012 0.118 0.065 0.053 0.047
iterated BIC 0.182 0.188 0.229 0.171 0.165 0.218 0.253 0.141
direct BIC 0.047 0.047 0.041 0.053 0.053 0.035 0.029 0.059
BIC(SURE) 0.076 0.059 0.024 0.006 0.147 0.065 0.041 0.035
For each forecast horizon and window length, the table reports the proportion of variables for
which the respective forecast methods generate the lowest MSFE-value. For the model selection
methods see the footnote to Table 3. Proportions are computed across all 170 series in the
Marcellino, Stock and Watson (2006) data set.

Table 6: Average ratio of squared bias measured relative to the MSFE of the
iterated univariate forecast models selected by the AIC
Forecast horizon 3 6 12 24 3 6 12 24

AR, w = 120 AR, w = 240
iterated AIC 0.014 0.028 0.049 0.090 0.019 0.040 0.074 0.154
direct AIC 0.012 0.023 0.048 0.114 0.018 0.037 0.079 0.194
mod. AIC(diag) 0.012 0.023 0.052 0.120 0.018 0.037 0.079 0.195
mod. AIC(NW) 0.012 0.023 0.049 0.114 0.019 0.038 0.078 0.195
AIC(SURE) 0.013 0.024 0.048 0.116 0.025 0.040 0.081 0.202
iterated BIC 0.025 0.050 0.081 0.129 0.041 0.092 0.166 0.294
direct BIC 0.016 0.029 0.056 0.117 0.022 0.042 0.085 0.198
BIC(SURE) 0.018 0.031 0.059 0.122 0.032 0.050 0.094 0.213

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.036 0.068 0.106 0.163 0.056 0.117 0.206 0.365
direct AIC 0.027 0.043 0.070 0.152 0.038 0.061 0.104 0.226
mod. AIC(diag) 0.026 0.041 0.073 0.164 0.038 0.065 0.106 0.215
mod. AIC(NW) 0.026 0.043 0.070 0.152 0.037 0.061 0.104 0.230
AIC(SURE) 0.025 0.041 0.069 0.151 0.035 0.055 0.097 0.206
iterated BIC 0.033 0.063 0.098 0.152 0.058 0.124 0.217 0.374
direct BIC 0.028 0.042 0.073 0.157 0.041 0.067 0.109 0.227
BIC(SURE) 0.025 0.041 0.073 0.157 0.037 0.061 0.101 0.205
The table reports the squared bias of the different forecasts as a ratio of the corresponding
MSFE of the iterated AR forecast based on the models selected by AIC with w = 120, where
w is the length of the estimation window. For the model selection methods see the footnote
to Table 3. Averages are computed across all 170 series in the Marcellino, Stock and Watson
(2006) data set.
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Table 8: Average forecasting performance measured by the MSFE relative to
the corresponding value generated by the univariate iterated forecasting models
selected by the AIC in sub-categories of the Marcellino, Stock and Watson (2006)
data
Forecast horizon 3 6 12 24 3 6 12 24

Categories (A)-(D) (averages over 135 series)
AR, w = 120 AR, w = 240

iterated AIC 1.000 1.000 1.000 1.000 0.964 0.945 0.944 0.966
direct AIC 1.024 1.027 1.096 1.185 0.969 0.949 0.983 1.042
mod. AIC(diag) 1.021 1.026 1.122 1.163 0.969 0.949 0.978 1.051
mod. AIC(NW) 1.008 1.023 1.099 1.201 0.960 0.941 0.981 1.046
AIC(SURE) 1.023 1.036 1.088 1.161 0.974 0.969 0.992 1.048
iterated BIC 0.984 0.993 0.997 0.995 0.960 0.953 0.953 0.968
direct BIC 0.999 1.011 1.074 1.124 0.963 0.949 0.972 1.012
BIC(SURE) 0.996 1.015 1.076 1.113 0.962 0.966 0.980 1.009

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.928 0.954 0.978 0.982 0.886 0.888 0.872 0.877
direct AIC 0.945 0.983 1.069 1.231 0.881 0.909 0.977 1.094
mod. AIC(diag) 0.946 0.985 1.065 1.165 0.878 0.903 0.959 1.043
mod. AIC(NW) 0.942 0.989 1.074 1.241 0.877 0.903 0.971 1.099
AIC(SURE) 0.939 0.989 1.081 1.201 0.872 0.898 0.965 1.066
iterated BIC 0.927 0.937 0.942 1.001 0.890 0.888 0.875 0.895
direct BIC 0.943 0.961 1.051 1.189 0.887 0.905 0.961 1.061
BIC(SURE) 0.931 0.967 1.061 1.183 0.872 0.890 0.949 1.045

Category (E) (averages over 35 series)
AR, w = 120 AR, w = 240

iterated AIC 1.000 1.000 1.000 1.000 0.954 0.946 0.986 1.101
direct AIC 0.983 0.984 1.038 1.296 0.943 0.927 1.004 1.258
mod. AIC(diag) 0.982 0.984 1.048 1.352 0.942 0.926 0.999 1.275
mod. AIC(NW) 0.983 0.984 1.036 1.326 0.946 0.933 1.002 1.259
AIC(SURE) 0.997 0.997 1.057 1.299 1.029 1.108 1.312 1.330
iterated BIC 1.106 1.205 1.270 1.260 1.191 1.384 1.595 1.842
direct BIC 1.046 1.038 1.088 1.284 0.997 0.971 1.053 1.346
BIC(SURE) 1.047 1.067 1.129 1.295 1.111 1.246 1.410 1.420

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 1.168 1.332 1.449 1.401 1.315 1.566 1.773 2.041
direct AIC 1.139 1.281 1.360 1.332 1.210 1.328 1.323 1.291
mod. AIC(diag) 1.132 1.245 1.273 1.356 1.212 1.337 1.328 1.335
mod. AIC(NW) 1.131 1.264 1.361 1.330 1.222 1.334 1.334 1.301
AIC(SURE) 1.129 1.274 1.333 1.327 1.203 1.309 1.320 1.275
iterated BIC 1.155 1.316 1.443 1.413 1.341 1.631 1.884 2.162
direct BIC 1.129 1.237 1.320 1.353 1.239 1.358 1.357 1.333
BIC(SURE) 1.098 1.228 1.276 1.346 1.205 1.328 1.334 1.299
The table reports the MSFE of the different forecasts as a ratio of the MSFE of the iterated
AR forecast based on the model selected by AIC with w = 120, where w is the length of the
estimation window. ‘AR’ results are based on univariate autoregressive models and ‘FAVAR’
results are based on multivariate factor-augmented VAR models. The MSFEs are calculated
only for those periods where forecasts from all methods are available. For details see the footnote
to Table 3.
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Table 9: Average ratio of squared bias measured relative to the MSFE of the
iterated univariate forecasts selected by the AIC in sub-categories of the Mar-
cellino, Stock and Watson (2006) data
Forecast horizon 3 6 12 24 3 6 12 24

Categories (A)-(D) (averages over 135 series)
AR, w = 120 AR, w = 240

iterated AIC 0.008 0.017 0.027 0.054 0.013 0.027 0.047 0.097
direct AIC 0.008 0.015 0.032 0.068 0.013 0.026 0.053 0.129
mod. AIC(diag) 0.008 0.016 0.037 0.067 0.013 0.026 0.053 0.128
mod. AIC(NW) 0.009 0.016 0.033 0.068 0.013 0.026 0.053 0.129
AIC(SURE) 0.008 0.016 0.031 0.066 0.015 0.029 0.054 0.125
iterated BIC 0.009 0.019 0.028 0.053 0.015 0.031 0.051 0.099
direct BIC 0.008 0.016 0.033 0.064 0.014 0.027 0.054 0.117
BIC(SURE) 0.009 0.017 0.034 0.065 0.016 0.030 0.053 0.119

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.019 0.032 0.044 0.078 0.031 0.056 0.082 0.137
direct AIC 0.014 0.020 0.040 0.108 0.024 0.042 0.088 0.221
mod. AIC(diag) 0.015 0.022 0.048 0.119 0.024 0.044 0.087 0.194
mod. AIC(NW) 0.014 0.021 0.041 0.110 0.023 0.041 0.087 0.223
AIC(SURE) 0.013 0.019 0.040 0.109 0.022 0.037 0.080 0.196
iterated BIC 0.016 0.026 0.035 0.065 0.027 0.046 0.068 0.121
direct BIC 0.016 0.021 0.041 0.108 0.025 0.044 0.088 0.210
BIC(SURE) 0.014 0.020 0.043 0.109 0.024 0.040 0.080 0.186

Category (E) (averages over 35 series)
AR, w = 120 AR, w = 240

iterated AIC 0.035 0.074 0.134 0.228 0.041 0.088 0.180 0.372
direct AIC 0.026 0.054 0.108 0.292 0.039 0.081 0.178 0.445
mod. AIC(diag) 0.026 0.053 0.111 0.322 0.039 0.081 0.177 0.456
mod. AIC(NW) 0.025 0.052 0.108 0.293 0.040 0.083 0.179 0.447
AIC(SURE) 0.028 0.054 0.114 0.306 0.062 0.081 0.185 0.499
iterated BIC 0.083 0.171 0.286 0.421 0.138 0.323 0.609 1.042
direct BIC 0.048 0.077 0.146 0.323 0.051 0.096 0.207 0.508
BIC(SURE) 0.052 0.085 0.159 0.338 0.093 0.128 0.250 0.576

FAVAR, w = 120 FAVAR, w = 240
iterated AIC 0.100 0.206 0.344 0.490 0.151 0.353 0.683 1.241
direct AIC 0.076 0.130 0.186 0.321 0.090 0.133 0.167 0.247
mod. AIC(diag) 0.068 0.118 0.171 0.338 0.091 0.145 0.182 0.296
mod. AIC(NW) 0.072 0.127 0.181 0.315 0.092 0.135 0.170 0.253
AIC(SURE) 0.072 0.126 0.181 0.312 0.083 0.127 0.164 0.244
iterated BIC 0.099 0.205 0.340 0.485 0.178 0.425 0.791 1.350
direct BIC 0.076 0.124 0.194 0.345 0.105 0.155 0.188 0.293
BIC(SURE) 0.069 0.123 0.186 0.341 0.091 0.142 0.182 0.279
The table reports the squared bias of the different forecasts as a ratio of the MSFE of the
iterated AR forecast based on the model selected by AIC with w = 120, where w is the length
of the estimation window. For the model selection methods see the footnote to Table 3.
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