Econometric Issues in the Analysis of Contagion*

M. Hashem Pesaran ${ }^{\dagger}$
University of Cambridge

Andreas Pick ${ }^{\ddagger}$
De Nederlandsche Bank

This version: March 7, 2006

Abstract

This paper presents a canonical, econometric model of contagion and investigates the conditions under which contagion can be distinguished from interdependence. In a two-market set up it is shown that for a range of fundamentals the solution is not unique, and for sufficiently large values of the contagion coefficients it has interesting bifurcation properties with bimodal density functions. The identification of contagion requires that the equations for the individual markets contain market specific regressors. This sheds doubt on the general validity of the correlation based tests of contagion recently proposed in the literature which do not involve any market specific variables. Furthermore, we show that ignoring endogeneity and interdependence can introduce an upward bias in the estimate of the contagion coefficient, and using Monte Carlo experiments we further show that this bias could be substantial. Finally, we analyse data on European interest rates spreads during the ERM and find a clear asymmetry in the contagion effects of sharp rises and falls; with only the former having some statistically significant effects.

JEL Classifications: C10, C123, G10, G15.
Keywords: Contagion, Interdependence, Identification, Financial Crises.

[^0]
1 Introduction

It has been frequently observed that financial crises appear in clusters. There exists now a large body of literature that attempts to distinguish between contagion and interdependence. This literature has been reviewed by Dornbusch, Park, and Claessen (2000), Pericoli and Sbracia (2002), and Dungey, Fry, Gonzalez-Hermosillo and Martin (2005). The theoretical literature on financial crises considers a number of reasons for crises to appear in clusters. Masson (1999) identifies three categories under which the different theories can be subsumed. First, the theory of "monsoonal effects" suggests that financial crises appear to be contagious because underlying macroeconomic variables are correlated. Second, financial crises may be transmitted between countries via "spill-overs": a crisis affects another country through external links such as trade. Finally, the theory of "pure contagion" holds that the market jumps from a "good" to a "bad" equilibrium.

The first two cases, monsoonal effects and spill-overs, are examples of interdependence. Crises resulting from interdependence could, in principle, be predictable using macroeconomic fundamentals. If the interdependence during non-crises periods is known, the effect of a financial crisis in one country on the likelihood of a crisis in another country can be evaluated. The third case, jumps between equilibria, is what we refer to as contagion in this paper: a largely unpredictable, higher correlation during crises times compared to normal times. This definition of contagion means that a crisis in one country increases the likelihood of a crisis in another country over and above what would be implied by the interdependence that prevails between these countries in non-crises times. This definition corresponds to that given, for example, by Forbes and Rigobon (2001, 2002).

The distinction between contagion and interdependence has important implications. Investors need to adjust their portfolios accordingly if markets have a higher correlation during crises as diversification of portfolios across markets might be less useful than anticipated if based on correlations in tranquil times. Equally, the policy responses to a crisis will depend on the perceived nature of transmission of shocks across the financial markets. If the cause of a crisis is a random jump between equilibria, i.e. contagion, policy intervention could be effective. In contrast, if a crisis spreads to other markets because the fundamentals are correlated, then policy-makers are less likely to be able to prevent a crisis from spreading.

In this paper we propose a canonical model of contagion that allows for all the three different causes of crises: first, country or market specific shocks, second, common observed or unobserved factors, i. e. interdependence, and, third, higher correlation during crises times, i.e. contagion. Furthermore, we characterise the solution of the model and we find that the solution is not unique for a range of fundamentals. For sufficiently large values of the contagion coefficients the solution has interesting bifurcation properties with
bimodal density functions.
In section 3 we discuss the problems of identification and estimation of the contagion coefficients in the canonical model. The estimation is shown to be an example of the general problem of inference in the non-linear simultaneous equation models. To identify contagion effects in the presence of inter-dependencies the equations for the individual markets or countries must contain country (market) specific variables. The extension to a multicountry or -market model is considered in section 4.

In view of our discussion of the canonical model and its properties we reconsider the extant empirical literature on contagion in section 5. A set of papers examines contagion of financial markets by testing for higher correlation between markets during crises times, inter alia, King and Wadhwani (1990), Boyer, Gibson, and Loretan (1999), Loretan and English (2000), Forbes and Rigobon (2002), Bae, Karolyi and Stulz (2003), and Corsetti, Pericoli and Sbracia (2005). However, pure correlation-based tests for contagion cannot be valid. Country specific regressors are needed to distinguish contagion from interdependence. The correlation based tests of contagion recently proposed in the literature attempt to overcome the identification problem by assuming that, first, the crises periods can be identified a priori, and that, second, such episodes are sufficiently prolonged and contiguous so that cross-country (market) correlations during crisis and non-crisis periods can be consistently estimated and compared. These are strong assumptions that are unlikely to hold in practice and their implementation tends to be subject to a sample selection bias. Such correlation analyses are ex post in nature and are therefore not helpful if the focus of the analysis is to develop an early warning system for policy use.

Favero and Giavazzi (2002) develop a test of contagion using a simultaneous equation framework to distinguish interdependence from contagion, but continue to rely on ex post identification of crisis from non-crisis periods. They also require that the identified set of crisis periods (dummies) can be classified into those that are common to all markets under consideration and those that are market specific. The test of contagion is then carried out by checking the significance of country specific crisis dummies (treated as predetermined) in equations for other countries. Favero and Giavazzi's framework is closer to our modelling approach, but is still subject to the sample selection bias, and cannot be used for forecasting or for the development of early warning systems.

A second set of papers has been based on the literature on the macroeconomic causes of currency crises, for example Eichengreen, Rose, and Wyplosz (ERW) (1996), Esquivel and Larraín (1998), Kruger, Osakwe, and Page (1998), Stone and Weeks (2001), and Kumar, Moorthy, and Perraudin (2002). We show that ignoring the endogeneity of the contagion indicator and/or interdependence of the error terms can introduce an upward bias in the estimate of the contagion coefficient, and using Monte Carlo experi-
ments we further show that this bias could be substantial. Our simulations also suggest that the contagion coefficient of 0.54 obtained from pooled probit estimation of ERW's model could be due to neglected interdependencies rather than contagion.

In section 6 we estimate a two-sided version of the contagion model advanced in this paper using weekly observations on three month interest rates spreads (relative to German rates) for seven European economies, analysed previously by Favero and Giavazzi (2002). In our set up identification of crises is endogenized and their effects are estimated simultaneously with the coefficients of interdependence of the spreads in normal periods. We find a clear asymmetry in the contagion effects of sharp rises and sharp falls in interest rates spreads; with only the former having some statistically significant effects.

2 A Canonical Model of Contagion: A Two-Country Framework

Consider the following relations

$$
\begin{align*}
& y_{1 t}=\boldsymbol{\delta}_{1}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{1}^{\prime} \mathbf{x}_{1 t}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2} \sigma_{2, t-1}\right)+u_{1 t} \tag{1}\\
& y_{2 t}=\boldsymbol{\delta}_{2}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{2}^{\prime} \mathbf{x}_{2 t}+\beta_{2} \mathrm{I}\left(y_{1 t}-c_{1} \sigma_{1, t-1}\right)+u_{2 t} \tag{2}
\end{align*}
$$

where $y_{i t}$ is a performance indicator for country $i=1,2, t=1, \ldots, T, u_{1 t}$ and $u_{2 t}$ are serially uncorrelated errors with zero means, conditional variances $\sigma_{u 1, t-1}^{2}$ and $\sigma_{u 2, t-1}^{2}$ and a non-zero correlation coefficient ρ. While it is in principle possible to allow for time variations in ρ, such a generalisation could obscure the properties of the correlation between $y_{1 t}$ and $y_{2 t}$. We show below that $\operatorname{Corr}\left(y_{1 t}, y_{2 t}\right)$ could be time varying even if ρ is not. The regressors, $\mathbf{x}_{i t}$, are $k_{i} \times 1$ country-specific observed factors assumed to be pre-determined and distributed independently of $u_{j t}$ for all i and j. Countryspecific dynamics can be allowed for by including $y_{i, t-1}, y_{i, t-2}, \ldots$ in $\mathbf{x}_{i t}$. The $s \times 1$ vector \mathbf{z}_{t} contains pre-determined observed common factors, such as international oil prices. $\mathrm{I}(A)$ is an indicator function that takes the value of unity if $A>0$ and zero otherwise,

$$
\sigma_{i, t-1}^{2}=\operatorname{Var}\left(y_{i t} \mid \Omega_{t-1}\right)
$$

where Ω_{t-1} is the information available at time $t-1$.
Examples of performance indicators include stock market returns used by Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbracia (2005), and the index of "exchange market pressure" employed by Eichengreen, Rose and Wylosz (1996), which is a weighted average of exchange rate depreciation, interest rates differential and international reserves ratios. We are assuming
that $y_{i t}$ is defined in such a way that a crisis is associated with extreme positive values of $y_{i t}$, and $c_{i}>0$.

In this set up interdependence is captured through non-zero values of ρ, and is distinguished from contagion effects characterised by non-zero values of β_{i}.

- It is assumed that contagion takes place only at times of crises, whilst interdependence is the result of normal market interactions.
- Country i is said to be in crisis if the performance index, $y_{i t}$, rises above a threshold value $c_{i t}$.
- Contagion is said to occur if a crisis in country 2 increases the probability of a crisis in country 1 over and above the usual market interactions, and vice versa.
- To test for contagion we first need to establish conditions under which the contagion coefficients, β_{i}, can be identified. Once such conditions are met, a test of contagion in country i can be carried out by testing $\beta_{i}=0$ against the one-sided alternatives, $\beta_{i}>0$ allowing for the possibility of non-zero ρ.

The above framework can be readily generalised to deal with both extremes simultaneously,

$$
y_{i t}=\boldsymbol{\delta}_{i}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{i}^{\prime} \mathbf{x}_{i t}+\beta_{i U} \mathrm{I}\left(y_{j t}-c_{j U} \sigma_{j, t-1}\right)+\beta_{i L} \mathrm{I}\left(-y_{j t}-c_{j L} \sigma_{j, t-1}\right)+u_{i t},
$$

for $i=1,2$, where $\beta_{i U}$ and $\beta_{i L}$ now refer to contagion effects on the upper and the lower tails and $c_{j U} \sigma_{j, t-1}$ and $c_{j L} \sigma_{j, t-1}$ are the associated thresholds with $c_{j U} \geq 0$ and $c_{j L} \geq 0$. It is clear that only one of the indicators can be triggered at a time.

Another possible generalisation would be to consider endogenous switches in the slope coefficients of the fundamentals $\left(\delta_{i}, \alpha_{i}\right)$ as well as in the intercepts. More specifically, we could have, for example,

$$
y_{i t}=\boldsymbol{\delta}_{i}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{i}^{\prime} \mathbf{x}_{i t}+\left(\beta_{i}+\gamma_{i} x_{i t}\right) \mathrm{I}\left(y_{j t}-c_{j} \sigma_{j, t-1}\right)+u_{i t} .
$$

Here we shall focus on the relatively simple model defined in (1) and (2), but we conjecture that our approach and arguments can be readily extended to the more general case.

2.1 Solution and Possibility of Multiple Equilibria

Setting

$$
w_{i t}=\boldsymbol{\delta}_{i}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{i}^{\prime} \mathbf{x}_{i t}+u_{i t},
$$

we re-write (1) and (2) as

$$
\begin{align*}
& y_{1 t}=w_{1 t}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2}\right), \tag{3}\\
& y_{2 t}=w_{2 t}+\beta_{2} \mathrm{I}\left(y_{1 t}-c_{1}\right), \tag{4}
\end{align*}
$$

where to simplify the notations and without loss of generality we abstract from the (possibly) time varying nature of the thresholds.

This is a system of non-linear and non-differentiable simultaneous equations and has a simple unique solution when either β_{1} or β_{2} is zero. For example, suppose that $\beta_{2}=0$. Then the solution is given by

$$
\begin{align*}
& y_{1 t}=w_{1 t}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2}\right), \tag{5}\\
& y_{2 t}=w_{2 t} . \tag{6}
\end{align*}
$$

When both contagion coefficients are positive the equation system (3) and (4) can be equivalently written as

$$
\begin{align*}
& Y_{1 t}=W_{1 t}+\mathrm{I}\left(Y_{2 t}\right), \tag{7}\\
& Y_{2 t}=W_{2 t}+\mathrm{I}\left(Y_{1 t}\right), \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
Y_{i t}=\frac{y_{i t}-c_{i}}{\beta_{i}}, W_{i t}=\frac{w_{i t}-c_{i}}{\beta_{i}} . \tag{9}
\end{equation*}
$$

To solve this simplified system we shall consider the following five mutually exclusive regions in the $\left(W_{1 t}, W_{2 t}\right)$ plane - see also Figure 1:

Region A: $W_{2 t}>0$,
Region B: $-1<W_{2 t} \leq 0$ and $W_{1 t}>0$,
Region C: $W_{2 t} \leq-1$,
Region D: $-1<W_{2 t} \leq 0$ and $W_{1 t}<-1$,
Region E: $-1<W_{2 t} \leq 0$ and $-1<W_{1 t} \leq 0$.
It is now easily verified that in regions A and B, the solution for $Y_{1 t}$ is unique and is given by

$$
\begin{equation*}
Y_{1 t}^{*}=1+W_{1 t}, \tag{10}
\end{equation*}
$$

and, similarly, in regions C and D the solution is unique and is given by

$$
\begin{equation*}
Y_{1 t}^{*}=W_{1 t} . \tag{11}
\end{equation*}
$$

However, in region E the solution is not unique. For example, for $W_{1 t}=$ $-1 / 2$, and $W_{2 t}=-1 / 3$, there are two possible solutions for $\mathbf{Y}_{t}=\left(Y_{1 t}, Y_{2 t}\right)^{\prime}$ given by

$$
\mathbf{Y}_{t}^{a}=\binom{-1 / 2}{-1 / 3} \text { and } \mathbf{Y}_{t}^{b}=\binom{1 / 2}{2 / 3} .
$$

Figure 1: Regions of $W_{1 t}$ and $W_{2 t}$

This problem of coherency has been discussed, for example, by Gourieroux, Laffont, and Monfort (1980). In the case of systems of binary choice equations Lewbel (2006) shows that coherency requires the system to be triangular in each period, although the direction of causality can vary across the periods. This solution, however, requires information beyond that contained in the model.

Here we extend the model by using the index d_{t} to designate the choice of the solution when $-1<W_{i t} \leq 0$ we have

$$
\begin{equation*}
Y_{i t}^{*}\left(d_{t}\right)=d_{t} W_{i t}+\left(1-d_{t}\right)\left(1+W_{i t}\right), \text { for } i=1,2 \tag{12}
\end{equation*}
$$

where the "favourable" solution occurs if $d_{t}=1$, and the "unfavourable" solution occurs if $d_{t}=0$. Notice that in the present set up the crisis (unfavourable outcome) is associated with the upper tail (large positive values). It is clear from Equation (12) that the distribution of $Y_{i t}^{*}\left(d_{t}\right)$ is a mean mixture of distributions with d_{t} as the selection parameter, and $d_{t} \sim \operatorname{Bernoulli}(\pi)$, where π is the probability of $W_{i t}$ being chosen in the mixture.

This is an interesting example where non-uniqueness arises only if the fundamentals (as measured by $W_{i t}$) for both countries (markets) are favour-
able but weak (in relation to the threshold values). This appears similar to the notion of weak fundamentals used by Sachs, Tornell and Velasco (1996). It is also reasonable to expect that the correlation of $Y_{1 t}$ and $Y_{2 t}$ would be higher if the unfavourable solution is chosen as compared to the favourable one. Simulation results reported below bear this out. However, we leave a more detailed modelling of d_{t} for future research.

Collecting the various components of the solution given by (10) to (12) we have

$$
\begin{array}{rlrl}
Y_{1 t}= & \left(1+W_{1 t}\right) \mathrm{I}\left(W_{2 t}\right) & & \text { (Region A) } \\
& +\left(1+W_{1 t}\right) \mathrm{I}\left(-W_{2 t}\right) \mathrm{I}\left(1+W_{2 t}\right) \mathrm{I}\left(W_{1 t}\right) & \text { (Region B) } \\
& +W_{1 t} \mathrm{I}\left(-1-W_{2 t}\right) & & \text { Region C) } \\
& +W_{1 t} \mathrm{I}\left(-W_{2 t}\right) \mathrm{I}\left(1+W_{2 t}\right) \mathrm{I}\left(-1-W_{1 t}\right) & & \text { (Region D) } \tag{13}\\
& +Y_{1 t}^{*}\left(d_{t}\right) \mathrm{I}\left(-W_{2 t}\right) \mathrm{I}\left(1+W_{2 t}\right) & & \text { (Region E) } \\
& \times \mathrm{I}\left(-W_{1 t}\right) \mathrm{I}\left(1+W_{1 t}\right) & &
\end{array}
$$

and by symmetry

$$
\begin{align*}
Y_{2 t} & =\left(1+W_{2 t}\right) \mathrm{I}\left(W_{1 t}\right) \\
& +\left(1+W_{2 t}\right) \mathrm{I}\left(-W_{1 t}\right) \mathrm{I}\left(1+W_{1 t}\right) \mathrm{I}\left(W_{2 t}\right) \\
& +W_{2 t} \mathrm{I}\left(-1-W_{1 t}\right) \tag{14}\\
& +W_{2 t} \mathrm{I}\left(-W_{1 t}\right) \mathrm{I}\left(1+W_{1 t}\right) \mathrm{I}\left(-1-W_{2 t}\right) \\
& +Y_{2 t}^{*}\left(d_{t}\right) \mathrm{I}\left(-W_{1 t}\right) \mathrm{I}\left(1+W_{1 t}\right) \mathrm{I}\left(-W_{2 t}\right) \mathrm{I}\left(1+W_{2 t}\right)
\end{align*}
$$

In terms of the original variables we obtain

$$
\begin{equation*}
y_{i t}^{*}=\beta_{i} Y_{i t}^{*}+c_{i t}, \text { for } i=1,2 \tag{15}
\end{equation*}
$$

It is important that the above solution is valid even if $y_{i, t-1}, y_{i, t-2}$, are included amongst of the individual-specific regressors, $\mathbf{x}_{i t}$. This feature considerably enhances the relevance of the model to the analysis of financial markets that show a mild degree of short term over-shooting.

It is clear that $y_{1 t}$ and $y_{2 t}$ will be correlated even if $w_{1 t}$ and $w_{2 t}$ are independently distributed, i.e. for values of $\beta_{i}>0, \operatorname{Corr}\left(y_{1 t}, y_{2 t}\right)>0$ even when $\operatorname{Corr}\left(w_{1 t}, w_{2 t}\right)=0$. For example, consider the simple case of Equations (5) and (6) where $\beta_{2}=0, \beta_{1}>0$, and $w_{1 t}$ and $w_{2 t}$ are independently distributed. In this case

$$
\operatorname{Cov}\left(y_{1 t}, y_{2 t}\right)=\beta_{1}\left[1-\mathrm{F}_{2}\left(c_{2}\right)\right]\left\{\mathrm{E}\left(w_{2 t}-c_{2} \mid w_{2 t}>c_{2}\right)-\mathrm{E}\left(w_{2 t}-c_{2}\right)\right\}
$$

and

$$
\operatorname{Corr}\left(y_{1 t}, y_{2 t}\right)=\frac{\beta_{1}\left[1-\mathrm{F}_{2}\left(c_{2 t}\right)\right]\left\{\mathrm{E}\left(w_{2 t}-c_{2} \mid w_{2 t}>c_{2}\right)-\mathrm{E}\left(w_{2 t}-c_{2}\right)\right\}}{\sqrt{\operatorname{Var}\left(w_{2 t}\right)\left\{\operatorname{Var}\left(w_{1 t}\right)+\beta_{1}^{2} \mathrm{~F}_{2}\left(c_{2}\right)\left[1-\mathrm{F}_{2}\left(c_{2}\right)\right]\right\}}}
$$

Table 1: Moments of the distribution of \mathbf{y}_{t}

β	$\pi=1\left(d_{t}=1\right)$				$\pi=0\left(d_{t}=0\right)$			
	\bar{y}_{1}	$\sigma\left(y_{1}\right)$	Kurt	Corr	\bar{y}_{1}	$\sigma\left(y_{1}\right)$	Kurt	Corr
$\rho=0$								
0.5	0.028	1.00	0.08	0.120	0.030	1.01	0.07	0.127
1.0	0.063	1.05	0.43	0.238	0.107	1.11	0.15	0.319
2.0	0.161	1.24	1.96	0.457	0.863	1.69	-1.13	0.706
$\rho=0.5$								
0.5	0.033	1.04	0.19	0.576	0.037	1.05	0.15	0.582
1.0	0.073	1.12	0.69	0.641	0.146	1.21	0.12	0.693
2.0	0.172	1.34	1.88	0.734	0.977	1.82	-1.31	0.854

"Kurt" denotes Kurtosis-3 of the distribution of $y_{1 t}$ and "Corr" the correlation between $y_{1 t}$ and $y_{2 t}$.
where $\mathrm{F}_{2}(x)$ is the cumulative distribution function of $w_{2 t}$. In the extreme value literature, $\mathrm{E}\left(w_{2 t}-c_{2} \mid w_{2 t}>c_{2}\right)$ is known as the mean excess function of $w_{2 t}$, see for example Embrechts, Klüppelberg and Mikosch (1997). This result provides support for the hypothesis that the degree of the dependence of $y_{1 t}$ and $y_{2 t}$ is an increasing function of the degree of the fat-tailedness of the $w_{2 t}$ process. For $w_{i t} \sim \mathrm{~N}(0,1)$,

$$
\operatorname{Corr}\left(y_{1 t}, y_{2 t}\right)=\frac{\beta_{1}\left[1-\Phi\left(c_{2}\right)\right]\left\{\mathrm{E}\left(w_{2 t} \mid w_{2 t}>c_{2}\right)\right\}}{\sqrt{1+\beta_{1}^{2} \Phi\left(c_{2}\right)\left[1-\Phi\left(c_{2}\right)\right]}}>0, \text { for } \beta_{1}>0, c_{2}>0 .
$$

2.2 Some Numerical Results

Suppose that $c_{i t}=1.64$ (that corresponds to the upper 95% tail of the standard normal), let $\beta_{1}=\beta_{2}=\beta$, and

$$
\binom{w_{1 t}}{w_{2 t}} \sim \mathrm{~N}\left(\mathbf{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) .
$$

Using these parameters we can sample the dependent variables and investigate their properties for different values of the contagion coefficient β. The results reported below are based on 30,000 sampled values of $y_{1 t}$ and $y_{2 t}$.

Table 1 reports the moments of $y_{1 t}$ and the correlation of $y_{1 t}$ and $y_{2 t}$ under the assumption that only one of the mixture distributions is visited. Note, however, that due to the symmetry of the model the reported moments also apply to $y_{2 t}$. On the left side of the table the results for $\pi=1$ are reported and on the right side the results for $\pi=0$.

Rather than choosing only one part of the mixture in (15) one can also consider intermediate cases where both parts of the mixture are visited. Below we set $\pi=0.5$ by sampling $d_{t}=\mathrm{I}\left(s_{t}\right)$ where $s_{t} \sim \mathrm{~N}(0,1)$. In this case

Figure 2: Scatter plot of y_{1} on y_{2}, and histogram of y_{1} with normal curve $(\beta=2, \rho=0.8, \pi=0.5)$

one obtains very pronounced bimodal distributions for $y_{i t}^{*}$. A clear polar separation of solutions emerges when β is large, as can be seen in Figures 2 for $\beta=2$ and $\rho=0.8$. More dramatic pictures can be obtained for larger values of β as in Figure 3. These parameter values are chosen for illustrative purposes and we do not expect to observe such extreme phenomena in practice. For small values of β the polarisation is very slight and cannot be revealed by visual inspection. This can be seen in Figures 4, which display the results for $\beta=0.5$ and $\rho=0.5$.

3 Identification and Estimation of the Contagion Coefficients

The system of equations (1) and (2) represent a two-equation non-linear simultaneous equation model, which has been studied extensively in the econometric literature as reviewed, for example, by Amemiya (1985). The above equation system whilst non-linear in the endogenous variables, $\mathbf{y}_{t}=$ $\left(y_{1 t}, y_{2 t}\right)^{\prime}$, is linear in the parameters for known threshold values, c_{1} and c_{2}. This somewhat simplifies the identification and estimation problems. In what follows we focus on this relatively simple case by assuming that c_{1} and c_{2} are known and that the variances $\sigma_{i, t-1}$ are time invariant and can be absorbed in c_{i}. The non-uniqueness of the solution itself is no impediment to identification and/or consistent estimation of the unknown parameters. As in the case of simultaneous equation models, it is possible to consistently estimate the parameters of a single equation in a system without necessarily having to fully specify the system of equations. An additional equation for d_{t}, is not necessary for the consistent estimation of the contagion coefficients

Figure 3: Scatter plot of y_{1} on y_{2}, and histogram of y_{1} with normal curve ($\beta=3.5, \rho=0.8, \pi=0.5$)

Figure 4: Scatter plot of y_{1} on y_{2}, and histogram of y_{1} with normal curve ($\beta=0.5, \rho=0.5, \pi=0.5)$

β_{i}, for example. However, the identification problem becomes much more complicated and poses new challenges if the focus of the analysis is also on the identification of the d_{t} process itself. This is beyond the scope of the present paper and will not be addressed. Instead, our focus will be on identification and consistent estimation of the contagion coefficients.

3.1 Inconsistency of the OLS Estimators

Consider the Ordinary Least Squares (OLS) regressions of $y_{i t}$ on $\mathbf{z}_{t}, \mathbf{x}_{i, t}$, $\mathrm{I}\left(y_{j t}-c_{j}\right)$, for $i, j=1,2$ and for simplicity suppose that the two equations only contain one country-specific regressor each and assume that these regressors $\left(x_{1 t}, x_{2}\right)$ are strictly exogenous, stationary, and distributed independently of the errors, $u_{1 t}$ and $u_{2 t}$,

$$
\begin{align*}
& y_{1 t}=\alpha_{1} x_{1 t}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2}\right)+u_{1 t}, \tag{16}\\
& y_{2 t}=\alpha_{2} x_{2 t}+\beta_{2} \mathrm{I}\left(y_{1 t}-c_{1}\right)+u_{2 t}, \tag{17}
\end{align*}
$$

where

$$
\left.\binom{u_{1 t}}{u_{2 t}} \right\rvert\, x_{1 t}, x_{2 t} \sim N\left[\binom{0}{0},\left(\begin{array}{cc}
\sigma_{u 1}^{2} & \rho \sigma_{u 1} \sigma_{u 2} \\
\rho \sigma_{u 1} \sigma_{u 2} & \sigma_{u 2}^{2}
\end{array}\right)\right] .
$$

Suppose also that probability of crisis occurring in either of the two countries are neither zero nor unity, namely

$$
\begin{equation*}
T^{-1} \sum_{t=1}^{T} \mathrm{I}\left(y_{j t}-c_{j}\right) \rightarrow \pi_{j}, \text { where } 1>\pi_{j}>0, \tag{18}
\end{equation*}
$$

which is shown to be true for errors with unbounded support in Appendix A. We also have

$$
\begin{align*}
T^{-1} \sum_{t=1}^{T} x_{j t}^{2} & \rightarrow \sigma_{x j}^{2}>0 \tag{19}\\
T^{-1} \sum_{t=1}^{T} x_{j t} u_{i t} & \rightarrow 0, \text { for } i, j=1,2 . \tag{20}
\end{align*}
$$

The OLS estimator of β_{1} is given by

$$
\hat{\beta}_{1}=\left(\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{d}_{2}\right)^{-1} \mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{y}_{1},
$$

where $\mathbf{d}_{2}=\left(\mathrm{I}\left(y_{21}-c_{2}\right), \mathrm{I}\left(y_{22}-c_{2}\right), \ldots, \mathrm{I}\left(y_{2 T}-c_{2}\right)\right)^{\prime}, \mathbf{M}_{1}=\mathbf{I}_{T}-\mathbf{x}_{1}\left(\mathrm{x}_{1}^{\prime} \mathbf{x}_{1}\right)^{-1} \mathbf{x}_{1}^{\prime}$, $\mathbf{x}_{1}=\left(x_{11}, x_{12}, \ldots, x_{1 T}\right)^{\prime}$, and $\mathbf{y}_{1}=\left(y_{11}, y_{12}, \ldots, y_{1 T}\right)^{\prime}$. Furthermore,

$$
T^{-1}\left(\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{d}_{2}\right)=T^{-1} \sum_{t=1}^{T} \mathrm{I}\left(y_{2 t}-c_{2}\right)-\frac{\left[T^{-1} \sum_{t=1}^{T} \mathrm{I}\left(y_{2 t}-c_{2}\right) x_{1 t}\right]^{2}}{T^{-1} \sum_{t=1}^{T} x_{1 t}^{2}},
$$

and $T^{-1}\left(\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{d}_{2}\right)$ tends to a non-zero constant, $\omega_{22}>0$. This is easily seen in the simple case where $x_{1 t}=1$ for all t. In this case $T^{-1}\left(\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{d}_{2}\right)$ converges to $\pi_{2}\left(1-\pi_{2}\right)>0$. Hence

$$
\operatorname{plim}_{T \rightarrow \infty}\left(\hat{\beta}_{1}\right)=\beta_{1}+\frac{\operatorname{plim}_{T \rightarrow \infty}\left(\frac{\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{u}_{1}}{T}\right)}{\omega_{22}} .
$$

where $\mathbf{u}_{1}=\left(u_{11}, u_{12}, \ldots, u_{1 T}\right)^{\prime}$. Also under our assumptions (see in particular (19) and (20))

$$
\begin{aligned}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{\mathbf{d}_{2}^{\prime} \mathbf{M}_{1} \mathbf{u}_{1}}{T}\right) & =\operatorname{plim}_{T \rightarrow \infty}\left(\frac{\mathbf{d}_{2}^{\prime} \mathbf{u}_{1}}{T}\right)-\frac{\operatorname{plim}_{T \rightarrow \infty}\left(\frac{\mathbf{d}_{2}^{\prime} \mathbf{x}_{1}}{T}\right) \underset{T \rightarrow \infty}{ } \operatorname{plim}_{T}\left(\frac{\mathbf{x}_{1}^{\prime} \mathbf{u}_{1}}{T}\right)}{\sigma_{x 1}^{2}} \\
& =\mathrm{E}\left[u_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right],
\end{aligned}
$$

and

$$
\operatorname{plim}_{T \rightarrow \infty}\left(\hat{\beta}_{1}\right)=\beta_{1}+\frac{\mathrm{E}\left[u_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]}{\omega_{22}} .
$$

In general, $\mathrm{E}\left[u_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right] \neq 0$, and the OLS estimator of β_{1} is inconsistent. The sign and the magnitude of the inconsistency of $\hat{\beta}_{1}$ depends on β_{2} and ρ. The OLS estimator of β_{1} is consistent only if $\beta_{2}=\rho=0$, namely if the contagion model is recursive (triangular) and there are no interdependencies through the errors. To see this consider the relatively simple case where $\beta_{2}=0$, and note that under normally distributed errors we have

$$
\begin{equation*}
u_{1 t}=\rho\left(\frac{\sigma_{u 1}}{\sigma_{u 2}}\right) u_{2 t}+v_{t} \tag{21}
\end{equation*}
$$

where $u_{2 t}$ and v_{t} are independently distributed. Note also that v_{t} is distributed independently of $x_{1 t}$ and $x_{2 t}$ and has a zero mean. In this case

$$
\begin{aligned}
\mathrm{E}\left[u_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right] & =\mathrm{E}\left[u_{1 t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right)\right] \\
& =\rho\left(\frac{\sigma_{u 1}}{\sigma_{u 2}}\right) \mathrm{E}\left[u_{2 t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right)\right]+\mathrm{E}\left[v_{t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right)\right] .
\end{aligned}
$$

Since v_{t} is distributed independently of $x_{2 t}$ and $u_{2 t}$, then conditional on $x_{2 t}$ and $u_{2 t}$

$$
\mathrm{E}\left[v_{t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right) \mid u_{2 t}, x_{2 t}\right]=\mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right) \mathrm{E}\left(v_{t} \mid u_{2 t}, x_{2 t}\right)=0,
$$

and

$$
\mathrm{E}\left[u_{11} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]=\rho\left(\frac{\sigma_{u 1}}{\sigma_{u 2}}\right) \mathrm{E}\left[u_{2 t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right)\right]
$$

The following lemma shows that when $\rho>0$, and $\beta_{2}=0$, then $\mathrm{E}\left[u_{2 t} \mathrm{I}\left(y_{2 t}-\right.\right.$ $\left.\left.c_{2}\right)\right]>0$, and $\hat{\beta}_{1}$ will be a consistent estimator of β_{1} if and only if $\rho=0$. The direction of the bias is upward when $\rho>0$, and downward if $\rho<0$.

Lemma 1 Suppose $\beta_{2}=0$, and conditional on $x_{2 t}$, $u_{2 t}$ is normally distributed, then $\mathrm{E}\left[u_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]>0$ if $\rho>0$.

Proof. Under $\beta_{2}=0, u_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)=u_{2 t} \mathrm{I}\left(\alpha_{2} x_{2 t}+u_{2 t}-c_{2}\right)=u_{2 t}^{*}$, where

$$
u_{2 t}^{*}= \begin{cases}u_{2 t} & \text { if } u_{2 t}>c_{2}-\alpha_{2} x_{2 t} \\ 0 & \text { otherwise }\end{cases}
$$

Conditional on $x_{2 t}$, noting that by assumption $x_{2 t}$, and $u_{2 t}$ are independently distributed we have,

$$
\mathrm{E}\left(u_{2 t}^{*} \mid x_{2 t}\right)=\operatorname{Pr}\left(u_{2 t}>c_{2}-\alpha x_{2 t} \mid x_{2 t}\right) \mathrm{E}\left(u_{2 t} \mid u_{2 t}>c_{2}-\alpha_{2} x_{2 t}, x_{2 t}\right)
$$

But

$$
\mathrm{E}\left(u_{2 t} \mid u_{2 t}>c_{2}-\alpha_{2} x_{2 t}, x_{2 t}\right)=\frac{\sigma_{u 2} \phi\left(\frac{c_{2}-\alpha_{2} x_{2 t}}{\sigma_{u 2}}\right)}{\operatorname{Pr}\left(u_{2 t}>c_{2}-\alpha_{2} x_{2 t}, x_{2 t}\right)}
$$

and, hence,

$$
\mathrm{E}\left(u_{2 t}^{*} \mid x_{2 t}\right)=\sigma_{u 2} \phi\left(\frac{c_{2}-\alpha_{2} x_{2 t}}{\sigma_{u 2}}\right)
$$

Since $\phi\left(\frac{c_{2}-\alpha_{2} x_{2 t}}{\sigma_{u 2}}\right)>0$ for all values of $x_{2 t}$, we also have that

$$
\mathrm{E}\left(u_{2 t}^{*}\right)=\mathrm{E}\left[u_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]>0
$$

Consider now the general case where $\rho>0$ and $\beta_{2}>0$, and note that in this case (using (21)) we have

$$
\begin{equation*}
\mathrm{E}\left[u_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]=\rho\left(\frac{\sigma_{u 1}}{\sigma_{u 2}}\right) \mathrm{E}\left[u_{2 t} \mathrm{I}\left(Y_{2 t}\right)\right]+\mathrm{E}\left[\varepsilon_{1 t} \mathrm{I}\left(Y_{2 t}\right)\right] \tag{22}
\end{equation*}
$$

where $Y_{2 t}$ is given by the solution (14), which takes either the value of $W_{2 t}$ or $1+W_{2 t}$. The probability of whether the solution is $W_{2 t}$ or $1+W_{2 t}$ depends, in a complicated manner, on the probability of $W_{1 t}$ and $W_{2 t}$ falling in the regions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , and the probability of a particular solution being selected if $W_{1 t}$ and $W_{2 t}$ fall in region E. In Appendix B we give results from Monte Carlo experiments, which show that the expectation is positive for a wide range of values of $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}$, and ρ. Therefore, unless $\beta_{2}=\rho=0$, the OLS estimator of β_{1} will be inconsistent. The large sample bias will be upward when $\rho>0$ and $\beta_{1}>0$.

3.2 Consistent Estimation of the Contagion Coefficients

Consistent estimation of β_{i} can be achieved by instrumental variable techniques assuming there exist pre-determined variables specific to country i that are correlated with $\mathrm{I}\left(y_{i t}-c_{i}\right)$ and uncorrelated with the errors $u_{i t}$. If
there are no country-specific regressors, namely if $\boldsymbol{\alpha}_{1}=\boldsymbol{\alpha}_{2}=\mathbf{0}$, the contagion coefficients, β_{i}, are not identified. In this case

$$
\begin{aligned}
& y_{1 t}=\boldsymbol{\delta}_{1}^{\prime} \mathbf{z}_{t}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2}\right)+u_{1 t}, \\
& y_{2 t}=\boldsymbol{\delta}_{2}^{\prime} \mathbf{z}_{t}+\beta_{2} \mathrm{I}\left(y_{1 t}-c_{1}\right)+u_{2 t},
\end{aligned}
$$

and the observed common drivers, \mathbf{z}_{t}, cannot be used as instruments for the crisis indicators. In this case pooling of the country equations will not help either, even if the slope homogeneity assumption is imposed (namely if $\boldsymbol{\delta}_{1}=\boldsymbol{\delta}_{2}$, and $\beta_{1}=\beta_{2}$).

If, however, country (market) specific regressors exist, i.e. $\boldsymbol{\alpha}_{i} \neq 0, i=$ 1,2 , the following instrumental variables estimator can be used. Suppose that c_{1} and c_{2} are known and the observations $\mathbf{y}_{t}, \mathbf{w}_{t}=\left(\mathbf{z}_{t}^{\prime}, \mathbf{x}_{1 t}^{\prime}, \mathbf{x}_{2 t}^{\prime}\right)^{\prime}, t=$ $1,2, \ldots, T$ are given and that the following conditions are met.
(i)

$$
\frac{\sum_{t=1}^{T} \mathbf{w}_{t} \mathbf{w}_{t}^{\prime}}{T} \xrightarrow{p} \boldsymbol{\Sigma}_{w w},
$$

where $\boldsymbol{\Sigma}_{w w}$ is a (non-stochastic) positive definite matrix.
(ii) Let $\mathbf{h}_{1 t}=\left(\mathbf{z}_{t}^{\prime}, \mathbf{x}_{1 t}^{\prime}, \mathrm{I}\left(y_{2 t}-c_{2}\right)\right)^{\prime}$, and $\mathbf{h}_{2 t}=\left(\mathbf{z}_{t}^{\prime}, \mathbf{x}_{2 t}^{\prime}, \mathrm{I}\left(y_{1 t}-c_{1}\right)\right)^{\prime}$, and

$$
\frac{\sum_{t=1}^{T} \mathbf{w}_{t} \mathbf{h}_{i, t}^{\prime}}{T} \xrightarrow{p} \mathbf{Q}_{i}
$$

where $\mathbf{Q}_{i} \quad i=1,2$ are full column rank matrices and the convergence to \mathbf{Q}_{i} is uniform.

Then the IV estimator of $\boldsymbol{\theta}_{i}=\left(\boldsymbol{\delta}_{i}^{\prime}, \boldsymbol{\alpha}_{i}^{\prime}, \beta_{i}\right)^{\prime}$, defined by

$$
\hat{\boldsymbol{\theta}}_{i}=\left(\hat{\mathbf{Q}}_{i}^{\prime} \hat{\boldsymbol{\Sigma}}_{w w}^{-1} \hat{\mathbf{Q}}_{i}\right)^{-1} \hat{\mathbf{Q}}_{i}^{\prime} \hat{\boldsymbol{\Sigma}}_{w w}^{-1} \hat{\mathbf{q}}_{i}
$$

where

$$
\hat{\mathbf{Q}}_{i}=\frac{\sum_{t=1}^{T} \mathbf{w}_{t} \mathbf{h}_{i, t}^{\prime}}{T}, \quad \hat{\boldsymbol{\Sigma}}_{w w}=\frac{\sum_{t=1}^{T} \mathbf{w}_{t} \mathbf{w}_{t}^{\prime}}{T}, \quad \hat{\mathbf{q}}_{i}=\frac{\sum_{t=1}^{T} \mathbf{w}_{t} y_{i t}}{T}
$$

is consistent for $\boldsymbol{\theta}_{i}$ as $T \rightarrow \infty .{ }^{1}$
The validity of these conditions needs to be checked in the case of the particular model under consideration. For example, suppose the model of interest is given by (16) and (17), and that the conditions (18) to (20) hold, and $T^{-1} \sum_{t=1}^{T} x_{2 t} x_{1 t}$ tends to a finite limit as $T \rightarrow \infty$. Let

$$
\operatorname{plim}_{T \rightarrow \infty}\left(\begin{array}{cc}
T^{-1} \sum_{t=1}^{T} x_{1 t}^{2} & T^{-1} \sum_{t=1}^{T} x_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right) \\
T^{-1} \sum_{t=1}^{T} x_{2 t} x_{1 t} & T^{-1} \sum_{t=1}^{T} x_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)
\end{array}\right)=\mathbf{V}_{1} .
$$

[^1]Then α_{1} and β_{1} can be identified if \mathbf{V}_{1} has a full rank. This rank condition can be investigated using the solutions (13) and (14). Although, the exact form of \mathbf{V}_{1} depends on the way the indeterminacy of the solution is resolved in periods where $-1<W_{i t}=\left(\alpha_{i} x_{i t}+u_{i t}-c_{i}\right) / \beta_{i} \leq 0$, for $i=1,2$, it would nevertheless be possible to check if \mathbf{V}_{1} is full rank without a full specification of the d_{t} process. For example, it suffices to postulate that d_{t} follows a general Bernoulli process with a probability that varies with the state variables, $x_{i t}, i=1,2$. In the case where $x_{i t}$ and $u_{i t}$ are strictly stationary, in view of (13) and (14), it follows that $y_{i t}, i=1,2$ are also strictly stationary, and

$$
\begin{aligned}
& T^{-1} \sum_{t=1}^{T} x_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right) \xrightarrow{p} \mathrm{E}\left[x_{1 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right] \\
& T^{-1} \sum_{t=1}^{T} x_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right) \xrightarrow{p} \mathrm{E}\left[x_{2 t} \mathrm{I}\left(y_{2 t}-c_{2}\right)\right]
\end{aligned}
$$

These results, in conjunction with the solution (13) and (14) allow us to establish the rank of \mathbf{V}_{1} without an exact knowledge of the d_{t} process.

4 Contagion in a Multi-Country Setting

Consider now a sample of N countries observed over periods $t=1,2, \ldots, T$, some or all of which could be subject to a crisis at least for some periods over the sample period. A generalisation of (1) and (2) to the case of $N>2$ can be written as

$$
y_{i t}=\boldsymbol{\delta}_{i}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{i}^{\prime} \mathbf{x}_{i t}+\beta_{i} \sum_{j=1}^{N} w_{i j} \mathrm{I}\left(y_{j t}-c_{j} \sigma_{j, t-1}\right)+u_{i t}, \quad i=1,2, \ldots, N
$$

where the weights $w_{i j} \geq 0$ are such that $\sum_{j=1}^{N} w_{i j}=1$, and $w_{i i}=0$, for all i. The theoretical literature on contagion can often be cast in terms of this general formulation. For example, Allen and Gale (2000) consider a theoretical model of financial contagion where bank failures spread from one region to another under different market structures. They study $N=4$ countries and consider three types of market structures, namely "complete", "incomplete", and "disconnected incomplete". In terms of our set up these correspond to different weighting schemes as defined by the following patterns

$$
\mathbf{W}_{\text {Complete }}=\left(w_{i j}\right)=\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

$$
\mathbf{W}_{\text {Incomplete }}=\left(w_{i j}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\mathbf{W}_{\text {Disconnected }}=\left(w_{i j}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Notice also that the incomplete structures pre-suppose the existence of certain ordering of the regions, although no particular ordering of the regions is required under the complete market structure. Under the disconnected incomplete structure the $N=4$ problem reduces to two separate $N=2$ problems and their solutions do not pose any new difficulties. The incomplete market pattern can be reduced to the following generalisation of (7) and (8)

$$
\begin{aligned}
& Y_{1 t}=W_{1 t}+\mathrm{I}\left(Y_{2 t}\right), \\
& Y_{2 t}=W_{2 t}+\mathrm{I}\left(Y_{3 t},\right. \\
& Y_{3 t}=W_{3 t}+\mathrm{I}\left(Y_{4 t}\right), \\
& Y_{4 t}=W_{4 t}+\mathrm{I}\left(Y_{1 t}\right),
\end{aligned}
$$

where as before

$$
\begin{equation*}
Y_{i t}=\frac{y_{i t}-c_{i} \sigma_{i, t-1}}{\beta_{i}}, W_{i t}=\frac{\boldsymbol{\delta}_{i}^{\prime} \mathbf{z}_{t}+\boldsymbol{\alpha}_{i}^{\prime} \mathbf{x}_{i t}+u_{i t}-c_{i} \sigma_{i, t-1}}{\beta_{i}}, i=1,2,3,4 \tag{23}
\end{equation*}
$$

The solution in this case can be obtained along similar lines followed for the simple case of $N=2$, although at the expense of much greater details. As before there will also be multiple solutions. For example, in the case where $W_{i t}=0$, two solutions are possible, namely $Y_{i t}^{a}=0$ and $Y_{i t}^{b}=1$.

Some interesting results can be obtained under the complete market structure. In this case (for a general N) we have

$$
\begin{equation*}
y_{i t}=\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}+\beta\left(\frac{\sum_{j=1, j \neq i}^{N} \mathrm{I}\left(y_{j t}-c_{j}\right)}{N-1}\right)+\gamma f_{t}+\varepsilon_{i t}, i=1,2 \ldots, N \tag{24}
\end{equation*}
$$

where for simplicity we have omitted the common observed effects $\left(\mathbf{z}_{t}\right)$, assumed all the coefficients are homogeneous and have characterised the interdependence of the errors using the single factor structure given by (25). Define the crisis indicator $\kappa_{i t}=\mathrm{I}\left(y_{i t}-c_{i}\right)$. Then,

$$
\frac{\sum_{j=1, j \neq i}^{N} \mathrm{I}\left(y_{j t}-c_{j}\right)}{N-1}=\left(\frac{N}{N-1}\right) \bar{\kappa}_{t}-\frac{1}{N-1} \kappa_{i t}
$$

where $\bar{\kappa}_{t}=N^{-1} \sum_{i=1}^{N} \kappa_{i t}$. Averaging (24) over $t=1,2, \ldots, T$, we have ${ }^{2}$

$$
\bar{y}_{t}=\boldsymbol{\alpha}^{\prime} \overline{\mathbf{x}}_{t-1}+\beta \bar{\kappa}_{t}+\gamma f_{t}+\bar{\varepsilon}_{t} .
$$

Using this result in (24) to eliminate the unobserved common effect, f_{t}, we have

$$
\begin{aligned}
y_{i t} & =\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}+\beta\left[\left(\frac{N}{N-1}\right) \bar{\kappa}_{t}-\frac{1}{N-1} \kappa_{i t}\right]+\left(\bar{y}_{t}-\boldsymbol{\alpha}^{\prime} \overline{\mathbf{x}}_{t}-\beta \bar{\kappa}_{t}-\bar{\varepsilon}_{t}\right)+\varepsilon_{i t} \\
i & =1,2 \ldots, N
\end{aligned}
$$

Hence

$$
y_{i t}-\bar{y}_{t}=\boldsymbol{\alpha}^{\prime}\left(\mathbf{x}_{i t}-\overline{\mathbf{x}}_{t}\right)-\beta\left(\frac{\kappa_{i t}-\bar{\kappa}_{t}}{N-1}\right)+\left(\varepsilon_{i t}-\bar{\varepsilon}_{t}\right)
$$

In the case where N is sufficiently large, the second term converges to zero and β cannot be identified, although a consistent estimator of $\boldsymbol{\alpha}$ can be obtained from an OLS regression of $y_{i t}-\bar{y}_{t}$ on $\left(\mathbf{x}_{i t}-\overline{\mathbf{x}}_{t}\right)$. Allowing for parameter heterogeneity does not resolve this problem. For N fixed as $T \rightarrow$ ∞, the condition for identification of β is similar to the two-country case discussed in Section 3 above.

5 A Re-examination of Existing Tests of Contagion

Using the insights gained from the canonical model we now reconsider the extant, empirical literature on contagion. We concentrate on the two most commonly used approaches: Correlation based tests of contagion and tests based on panel data analysis of currency crises.

5.1 Correlation Based Tests of Contagion

In a number of papers by Boyer, Gibson, and Loretan (1999), Loretan and English (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbracia (2005) attempts have been made to identify contagion effects from pairwise correlation of stock market returns by testing whether correlation is significantly higher during crises times compared to normal periods. The main difference between these studies is in how the correlation coefficient is adjusted for the higher volatility experienced in crises periods. All these studies require a priori specification of the crises periods. The data employed are typically daily return observations and do not consider global or country-specific variables in their analysis.

[^2]In terms of our set up the basic model underlying this approach can be written as (following the approach of Corsetti et al.)

$$
\begin{aligned}
& y_{1 t}=\alpha_{1}+\beta_{1} \mathrm{I}\left(y_{2 t}-c_{2 t}\right)+u_{1 t} \\
& y_{2 t}=\alpha_{2}+\beta_{2} \mathrm{I}\left(y_{1 t}-c_{1 t}\right)+u_{2 t}
\end{aligned}
$$

where guess-estimates of $c_{i t}$ are obtained from conditional sample means and standard deviations of $y_{i t}$ in an informal manner. The interdependence across the two countries is characterised using the single factor specification

$$
\begin{equation*}
u_{i t}=\gamma_{i} f_{t}+\varepsilon_{i t} \tag{25}
\end{equation*}
$$

where f_{t} is the unobserved common factor, and $\varepsilon_{i t}, i=1,2$ are idiosyncratic shocks:

$$
\begin{aligned}
f_{t} & \sim i i d(0,1) \\
\varepsilon_{i t} & \sim i i d\left(0, \sigma_{i}^{2}\right)
\end{aligned}
$$

f_{t} and $\varepsilon_{i t}$ are also assumed to be independently distributed. For the twocountry set up the single factor model is algebraically equivalent to assuming $u_{1 t}$ and $u_{2 t}$ are correlated with the correlation coefficient

$$
\rho=\frac{\gamma_{1} \gamma_{2}}{\sqrt{\sigma_{1}^{2}+\gamma_{1}^{2}} \sqrt{\sigma_{2}^{2}+\gamma_{2}^{2}}}
$$

Under this set up there exist no valid instruments with which to identify the contagion coefficient from the interdependence coefficient ρ. The identification problem is overcome in this literature by assuming that the crisis periods are known a priori, and are sufficiently prolonged and continuous so that correlation of $y_{1 t}$ and $y_{2 t}$ during crisis and non-crisis periods can be consistently estimated and compared.

Therefore, this approach is problematic on three counts.

1. The endogeneity problem discussed in the previous section is circumvented by separating crises periods from non-crises periods. Since crisis periods are identified ex post, after passing through the observations, the endogeneity bias is re-introduced, however, in form of a sample selection bias. ${ }^{3}$
2. Multi-country, multi-asset (market) generalisations of the correlation/covariance approach will require existence of much longer periods of continuous crisis for the estimation and testing strategy to be meaningful. Such data sets are unlikely to exist since by their very nature crisis periods are relatively short.

[^3]3. The correlation analysis cannot be used in forecasting and is of limited scope in a structural understanding of the crises and the factors behind their occurrence.

5.2 Panel Estimates of Contagion Effects

Eichengreen, Rose and Wyplosz (1996), Esquivel and Larrain (1998), Kruger, Osakwe and Page (1998), Kumar, Moorthy and Perraudin (2002) and Stone and Weeks (2001) attempt to estimate and test for contagion effects using panel data models. The econometric approach taken in these papers is based on binary choice models with linear index functions

$$
\begin{equation*}
y_{i t}=\alpha_{0 i}+\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}+\varepsilon_{i t}, \quad i=1,2, \ldots, N, t=1,2, \ldots, T, \tag{26}
\end{equation*}
$$

where $y_{i t}$ is a latent variable observed qualitatively through a univariate binary response indicator, $\kappa_{i t}=\mathrm{I}\left(y_{i t}\right)$, the currency crisis indicator, $\mathbf{x}_{i t}$ is a $k \times 1$ vector of observed macroeconomic and political variables, $\boldsymbol{\alpha}$ is a $k \times 1$ vector of unknown coefficients and $\varepsilon_{i t}$ is an idiosyncratic error assumed to be serially uncorrelated for each i, and iid normally distributed across i with mean zero, a unit variance. Except for Esquivel and Larrain (1998), who use a random effects probit model, the literature assumes that $\alpha_{0 i}=\alpha_{0}$.

Contagion is addressed by including a dummy variable, $\mathcal{C}_{i t}$, in model (26),

$$
\begin{equation*}
y_{i t}=\alpha_{0 i}+\beta \mathcal{C}_{i t}+\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}+\varepsilon_{i t}, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}_{i t}=\mathrm{I}\left(\sum_{j=1, j \neq i}^{N} \kappa_{j t}\right) . \tag{28}
\end{equation*}
$$

Under this formulation the crisis indicator, $\mathcal{C}_{i t}$, takes the value of unity if any one of the $N-1$ remaining countries find themselves in a crisis state. This formulation is quite similar to that discussed above and is subject to similar identification and estimation problems. ${ }^{4}$ Due to the non-linear nature of this formulation, in order to assess the impact of the endogeneity on the parameter estimates in the probit model of (26) we conduct a Monte Carlo experiment using the data of Eichengreen et al. (1996). Details of the data are given in the Appendix C.

5.2.1 Experimental Design

Simulation with artificial regressors The Monte Carlo experiments are based on the following data generating process (DGP),

$$
y_{i t}^{r}=\alpha_{0}+\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}^{r}+u_{i t}^{r}, \quad i=1,2, \ldots, N, t=1,2, \ldots, T, r=1,2, \ldots, R,
$$

[^4]where r refers to the replication number in the Monte Carlo experiments, R is the total number of replications, $\mathbf{x}_{i t}^{r}$ is a $k \times 1$ vector of simulated exogenous variables. Under this DGP, β, the contagion coefficient in (27), is set equal to zero and all other coefficients are identical across i.

The estimation of α_{0} and $\boldsymbol{\alpha}$ under a probit specification only makes use of $\kappa_{i t}^{r}=\mathrm{I}\left(y_{i t}^{r}\right)$ and, hence, without loss of generality the variance of the error term, $u_{i t}^{r}$, may be set equal to unity. To allow for correlation across the errors of different cross section units we adopt the following standardised one-factor structure

$$
u_{i t}^{r}=\frac{\gamma_{i} f_{t}^{r}+\varepsilon_{i t}^{r}}{\sqrt{1+\gamma_{i}^{2}}}
$$

where γ_{i} is a scalar, $f_{t}^{r} \sim \operatorname{iidN}(0,1)$, and $\varepsilon_{i t}^{r} \sim \operatorname{iidN}(0,1)$. Under these assumptions we have $\mathrm{E}\left(u_{i t}^{r}\right)=0$ and $\operatorname{Var}\left(u_{i t}^{r}\right)=1$. The pairwise correlation coefficient of the errors is given by

$$
\operatorname{Corr}\left(u_{i t}^{r}, u_{j t}^{r}\right)=\frac{\gamma_{i} \gamma_{j}}{\sqrt{\left(1+\gamma_{i}^{2}\right)\left(1+\gamma_{j}^{2}\right)}}
$$

Treating values of $y_{i t}^{r}>0$ as crises, in all our experiments we fix α_{0} such that the fraction of observations, ψ, with $y_{i t}^{r}>0$ is non-zero but relatively small, namely $\psi=0.05$. For this purpose, assuming that the regressors are normally distributed we have $\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}+u_{i t} \sim \operatorname{iidN}\left(0,1+\boldsymbol{\alpha}^{\prime} \Sigma_{x} \boldsymbol{\alpha}\right)$ and therefore

$$
\operatorname{Pr}\left(y_{i t}^{r}>0\right)=\operatorname{Pr}\left(\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}^{r}+u_{i t}^{r}>-\alpha_{0}\right)=1-\Phi\left(\frac{-\alpha_{0}}{\sqrt{1+\boldsymbol{\alpha}^{\prime} \boldsymbol{\Sigma}_{x} \boldsymbol{\alpha}}}\right)=\psi
$$

Hence, we set

$$
\begin{equation*}
\alpha_{0}=-\left(1+\boldsymbol{\alpha}^{\prime} \boldsymbol{\Sigma}_{x} \boldsymbol{\alpha}\right)^{1 / 2} \Phi^{-1}(1-\psi) \tag{29}
\end{equation*}
$$

This is an important choice in the Monte Carlo experiment because the contagion dummy becomes a vector of ones if the proportion of crises periods is too high or a vector of zeros if the proportion of crises periods is too low. In such a case the right hand side variables are perfectly collinear as they contain an intercept and the contagion dummy.

For each replication a contagion dummy, $\mathcal{C}_{i t}^{r}$, is constructed as

$$
\mathcal{C}_{i t}^{r}=\mathrm{I}\left(\sum_{j=1, j \neq i}^{N} \kappa_{j t}^{r}\right)
$$

For the probit estimation only the binary indicator $\kappa_{i t}^{r}=\mathrm{I}\left(y_{i t}^{r}\right)$ is observed. The probability of $\kappa_{i t}^{r}=1$ is modelled as

$$
\operatorname{Pr}\left(\kappa_{i t}^{r}=1\right)=\Phi\left(\alpha_{0}+\beta \mathcal{C}_{i t}^{r}+\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}^{r}\right),
$$

and for the linear OLS regression the assumed model is

$$
y_{i t}^{r}=\alpha_{0}+\beta \mathcal{C}_{i t}^{r}+\boldsymbol{\alpha}^{\prime} \mathbf{x}_{i t}^{r}+e_{i t}^{r},
$$

where $e_{i t}^{r} \sim \operatorname{iid}\left(0, \sigma_{e}^{2}\right)$. The parameters of the probit model (in particular the contagion coefficient, β) are computed by the maximum likelihood method.

In a first set of Monte Carlo experiments, we generate $\mathbf{x}_{i t}^{r} \sim \operatorname{iid}\left(\mathbf{0}, \boldsymbol{\Sigma}_{x}\right)$ for $k=2 .{ }^{5}$ We fix $\boldsymbol{\Sigma}_{x}$ by generating the regressors with the following common factor structure

$$
\begin{equation*}
x_{i t}^{r}=\frac{1}{\sqrt{1+\phi_{i}}}\left(q_{i t}^{r}+\phi_{i} h_{t}^{r}\right), \tag{30}
\end{equation*}
$$

where $q_{i t}^{r} \sim \operatorname{iidN}(0,1)$, and $h_{t}^{r} \sim \operatorname{iidN}(0,1)$. To ensure that the regressors are distributed independently of the errors, h_{t}^{r} and f_{t}^{r} are taken to be independent draws. Finally, without loss of generality we set $\boldsymbol{\alpha}=\boldsymbol{\iota}_{k}$, a $k \times 1$ vector of ones. Note that under $\phi_{i}=0, \boldsymbol{\Sigma}_{x}=\mathbf{I}_{k}$, and using (29) we have $\alpha_{0}=1.96(\sqrt{1+k})$ for $\psi=0.025$. In the case where $\phi_{i}>0, \boldsymbol{\Sigma}_{x}$ will have typical off diagonal elements $\sigma_{i j}=\phi_{i} \phi_{j} /\left(\sqrt{1+\phi_{i}} \sqrt{1+\phi_{j}}\right)$, and α_{0} follows from (29).

Note that, while we appreciate that parameter heterogeneity may be important in applications to real data, we abstract from it in the Monte Carlo experiment for simplicity. Intercept heterogeneity could be introduced via a random effects probit model or a conditional logit model, see Hsiao (2003).

Simulation with ERW regressors In a second set of Monte Carlo experiments the exogenous regressors of Eichengreen et al. (1996) are used and taken as given across all the replications. Under the null of no contagion β is set equal to zero and the other parameters, $\left(\alpha_{0}, \boldsymbol{\alpha}\right)$, are set equal to the estimates of the pooled probit model computed using the ERW data. These estimates, denoted $\hat{\alpha}_{0}$ and $\hat{\boldsymbol{\alpha}}$ are given in Table 2.

Hence, a vector \mathbf{y}^{r} is generated as

$$
y_{i t}^{r}=\hat{\alpha}_{0}+\hat{\boldsymbol{\alpha}}^{\prime} \mathbf{x}_{i t}+u_{i t}^{r}
$$

The specification of the error term and the estimation are as in the case of artificial data.

5.2.2 Results of the Monte Carlo Experiments

Results for the artificial regressors Tables 3-6 give the results for the Monte Carlo experiments with artificially generated regressors. Tables 3-4 show the results for orthogonal regressors and Tables 5-6 show the results

[^5]Table 2: Probit model with ERW data

variable	$\left(\hat{\alpha}_{0}, \hat{\boldsymbol{\alpha}}\right)$	$\|t\|$-value
Intercept $\left(\hat{\alpha}_{0}\right)$	-1.886	10.751
Capital controls	-0.134	0.717
Government victory	-0.060	1.141
Government loss	-0.332	0.787
Credit growth	0.016	1.880
Inflation	0.065	3.584
Output growth	0.020	0.732
Employment growth	0.043	1.007
Unemployment rate	0.073	3.010
Budget position	0.042	2.042
Current account	-0.024	1.072

Total number of observations $=645$
for regressors that are correlated with $\phi_{i}=0.5, \forall i$, see (30). The first of each set of tables, Tables 3 and 5, reports the results for the discretised dependent variable, i. e. the estimates from the probit model. The second of each set of tables, Tables 4 and 6 , are for the continuous dependent variable estimated via OLS.

For all experiments the bias increases with the size of the error correlation across i. For small and even medium sample sizes the estimate of β is quite imprecise in the probit model. However, the OLS estimates of the contagion effects, β, under error interdependence $\left(\rho=\gamma^{2} /\left(1+\gamma^{2}\right) \neq 0\right)$ is positive in all the experiments. This confirms the upward bias derived theoretically in the context of our simple two-country canonical model.

The last panel of each table gives the rejection probability for the hypothesis of no contagion, that is the proportion of experiments where the null hypothesis $\mathrm{H}_{0}: \beta=0$ is rejected. It can be seen that the rejection probability rises as interdependence increases. With $\gamma=1$, which is equivalent to an error correlation of $0.5, N=T=100$ the hypothesis of no contagion is virtually always rejected in all models. However, even mild interdependence leads to high rejection rates. In the OLS estimation with $\phi=0, \gamma=0.4$, which implies correlation of 0.14 , and $N=T=50$ the hypothesis of no contagion is rejected in 96.3% of cases.

The results show that the precision of the estimates does not improve equally when increasing N or T. In all the experiments the root mean square errors are systematically lower with T larger than N for a given number of observations $N T$. For example in Table 3 , for $\gamma=1$, for $T=50, N=100$, the RMSE is 1.038 and for $T=100, N=50$ it is 0.880 . To understand this recall that the contagion variable is 1 for all i if there are at least two crises in the period. Hence, in such a situation the variation of the contagion index
remains unchanged if other countries are added, and the effect of increasing N will be limited.

Results based on the ERW regressors Table 7 shows that both, the OLS and the probit results, produce a marked upward bias in the estimates of the contagion coefficient for non-zero values of γ and that the bias increases in γ. The bias could be substantial even for moderate degrees of cross dependence. For example, for $\gamma=0.4$ (which corresponds to a pairwise cross correlation coefficient of around 0.14) the pooled panel estimate of β is 0.27 as compared to its true value of zero. This result holds under both of the alternative estimation procedures.

The null hypothesis of $\beta=0$ is also rejected well in excess of the nominal 5% level for all non-zero values of γ. The pooled probit estimates also exhibit a substantial degree of over-rejection (12.3% as compared to 5%) even under $\gamma=0$. The degree of over-rejection of the pooled OLS estimates (7.2%) is much less pronounced, although still significantly different from 5% considering that the experiments are based on 2000 replications.

In view of these results it is reasonable to conclude that the estimate of the contagion coefficient of 0.54 that one obtains from pooled probit estimation using the ERW data could be wholly or partly due to neglected inter-dependencies of the equation errors across different countries.

6 Application to European Interest Rates Spreads

In this section we provide an empirical application of the model presented in this paper using data on European interest rates spreads analyzed by Favero and Giavazzi (2002). ${ }^{6}$ The data are three month interest rates spreads for seven European countries (the Netherlands, France, Italy, Spain, Denmark, Sweden, and Belgium) with weekly observations taken on Wednesdays over the period 2 November 1988 to 9 September 1992. The canonical model presented in this paper provides a formal statistical framework for a simultaneous analysis of contagion and interdependence without an a priori classification of the observations into crisis and non-crisis periods.

Favero and Giavazzi (2002) consider positive as well as negative extreme movements in the spreads, and pre-identify these extreme observations based on residuals from a first stage VAR (Vector Autoregressive) analysis in the seven spreads. In our application we introduce the upside and the downside crises dummies in our canonical model and consider the equations

$$
\begin{equation*}
\Delta y_{i t}=\alpha_{0 i}+\alpha_{i 1} \Delta y_{i, t-1}+\alpha_{i 2} \Delta y_{i, t-2}+\beta_{i}^{+} \mathcal{C}_{i t}^{+}+\beta_{i}^{-} \mathcal{C}_{i t}^{-}+\varepsilon_{i t} \tag{31}
\end{equation*}
$$

where $\Delta y_{i t}$ is the first difference in the spreads used by Favero and Giavazzi

[^6](2002). The contagion indices are defined as
$$
\mathcal{C}_{i t}^{+}=\mathrm{I}\left(\sum_{j=1, J \neq i}^{N} \mathrm{I}\left(\Delta y_{j t}-c_{j}\right)\right),
$$
and
$$
\mathcal{C}_{i t}^{-}=\mathrm{I}\left(\sum_{j=1, J \neq i}^{N} \mathrm{I}\left(-\Delta y_{j t}-c_{j}\right)\right),
$$
where $c_{j}>0$ is set to two standard deviations of $\Delta y_{i t}$, which implies that 2.9% of observations are positive crises observations and 2.1% negative crises observations. We have also tried other threshold levels and the results did not vary substantially. ${ }^{7}$

Equation (31) is estimated country by country using the Generalized Instrumental Variables Estimation (GIVE) procedure with the lagged dependent variables of the countries $j=1,2, \ldots, N, j \neq i$, used as instruments for $\mathcal{C}_{i t}^{+}$and $\mathcal{C}_{i t}^{-}$. Given that the endogenous variables $\mathcal{C}_{i t}^{+}$and $\mathcal{C}_{i t}^{-}$are nonlinear functions of the dependent variables, the strength of the instruments can be improved by also considering power series of the instruments (Kelejian 1971, Newey 1990). We construct powers of the lagged endogenous variables
$\mathbf{w}_{j t}(m)=\left[\Delta y_{j, t-1},\left(\Delta y_{j, t-1}\right)^{2}, \ldots,\left(\Delta y_{j, t-1}\right)^{m}, \Delta y_{j, t-2},\left(\Delta y_{j, t-2}\right)^{2}, \ldots,\left(\Delta y_{j, t-2}\right)^{m}\right]$,
and use

$$
\mathbf{W}_{i t}(m)=\left[\mathbf{w}_{1 t}(m), \mathbf{w}_{2 t}(m), \ldots, \mathbf{w}_{i-1, t}(m), \mathbf{w}_{i+1, t}(m), \ldots, \mathbf{w}_{N t}(m)\right],
$$

as instruments for $\mathcal{C}_{i t}^{+}$and $\mathcal{C}_{i t}^{-}$. In the applications we considered powers $m=1,2, \ldots, 6$, which also gives an insight into the robustness of the results to the choice of m. We also investigate the weak instrument problem by reporting the Cragg-Donald statistic (Cragg and Donald 1993, Stock and Yogo 2005) for the GIVE estimates.

The results are summarized in Table 8. The top panel provides the OLS estimates (that do not take the endogeneity of the contagion indices into account). For three countries, France, Spain, and Belgium, β_{i}^{+}is significant at least at 5% level, and β_{i}^{-}is significant for all countries except Italy. The results in the subsequent panels of Table 8 provide the instrumental variable estimates using $\mathbf{W}_{i t}(m)$ as the instruments. Setting $m=1, \beta_{i}^{+}$continues to be statistically significant in the case of France, Spain, and Belgium, whereas β_{i}^{-}becomes statistically insignificant for all the seven spreads. Using $m=2$ and 3 leads to the same results. When $m=4$ the contagion coefficient, β_{i}^{+}

[^7]in the equation for Italy becomes also significant, and when $m=5, \beta_{i}^{+}$in the equation for Spain becomes insignificant, and the same results applies to $m=6$.

Overall, the test results provide some evidence of contagion. But the effects are asymmetric, with no significant effects from sharp declines in the spreads, contrary to the OLS estimates. The statistical significance of the results should also be viewed with some caution, since the CraggDonald statistics reported in Table 8 show that the null of weak instruments cannot be rejected (Stock and Yogo 2005). Nevertheless, the statistical insignificance of β_{i}^{-}irrespective of the order of the power augmentation of the instruments (m), suggests that the significance of the OLS estimates of β_{i}^{-}, is most likely due to interdependence rather than contagion.

7 Conclusions

In this paper we have developed a canonical model of contagion. Using this model, we have considered the issue of identification and consistent estimation of contagion coefficients. We show that in the presence of error inter-dependencies contagion effects cannot be consistently estimated without country-specific regressors. This clearly highlights some of the pitfalls that surround the empirical studies of currency crises and financial contagion that are extant in the literature. Correlation analyses look for significant shifts in correlation coefficients across crises and tranquil periods without the use of country specific variables. In the case of such data sets identification of contagion is achieved by making strong a priori assumptions concerning sample splits into "crisis" and "no-crisis" periods. Invariably, this also involves the identification of the source country in which the crisis is purported to have begun.

Multi-country panel analyses of the type carried out by ERW do contain country specific fundamentals and could in principle be used to shed light on the issue of contagion versus interdependence. However, panel data studies are typically carried out assuming that contagion indices are predetermined and that equation errors across countries/markets are independently distributed, and as we have shown this could introduce a substantial upward bias in the estimates of the contagion coefficients.

The canonical model presented in this paper provides a formal statistical framework for a simultaneous analysis of contagion and interdependence without an a priori classification of the observations into crisis and noncrisis periods. This is illustrated using the data on European interest rates spreads analyzed by Favero and Giavazzi (2002). We find that contagion indices corresponding to sharp falls in the spreads (measured relative to the German interest rate) that are significant when using OLS become insignificant when accounting for their endogeneity using instrumental variables.

However, the statistical significance of sharp rises in the spreads for some of the European countries (France, Spain and Belgium) continue to remain statistically significant even after instrumentation. Not withstanding the possible weak instrument problem, these results provide some evidence of contagion in the transmission of interest rate shocks across the European bond markets during 1988-1992 (ERM period), but only when the interest rates rise relative to the German interest rate and not the reverse.

Appendix A: Further Mathematical Results

Lemma 2 Suppose $\mathbf{x}_{i t}$ and $u_{i t}$, for $i=1,2$, are serially uncorrelated random variables and the joint probability density of $\left(u_{1 t}, u_{2 t}\right)$ has positive support over \mathbb{R}^{2}, then

$$
\frac{1}{T} \sum_{t=1}^{T} \mathrm{I}\left(y_{i t}-c_{i}\right) \xrightarrow{p} \pi_{i}, \text { as } T \rightarrow \infty
$$

and $0<\pi_{i}<1$.
Proof. The $\mathrm{I}\left(y_{i t}-c_{i}\right)$ are binary, iid random variables with $\operatorname{Pr}\left(\mathrm{I}\left(y_{i t}-c_{i}\right)\right)=$ 1 resulting from (13), and the sample mean will converge to the expectation, which we now show to lie between 0 and 1 . We have that

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{I}\left(y_{i t}-c_{i}\right)\right)= & \operatorname{Pr}\left(Y_{i t}>0\right) \\
= & \operatorname{Pr}\left(W_{i t}+1>0 \mid W_{j t}>0\right) \operatorname{Pr}\left(W_{j t}>0\right) \\
& +\operatorname{Pr}\left(W_{i t}+1>0 \mid W_{i t}>0,-1<W_{j t} \leq 0\right) \\
& \times \operatorname{Pr}\left(W_{i t}>0,-1<W_{j t} \leq 0\right) \\
& +\operatorname{Pr}\left(W_{i t}>0 \mid W_{j t} \leq-1\right) \operatorname{Pr}\left(W_{j t} \leq-1\right) \\
& +\operatorname{Pr}\left(W_{i t}>0 \mid W_{i t} \leq-1,-1<W_{j t} \leq 0\right) \\
& \times \operatorname{Pr}\left(W_{i t} \leq-1,-1<W_{j t} \leq 0\right) \\
& +\operatorname{Pr}\left(Y^{*}(d)>0 \mid-1<W_{i t} \leq 0,-1<W_{j t} \leq 0\right) \\
& \times \operatorname{Pr}\left(-1<W_{i t} \leq 0,-1<W_{j t} \leq 0\right) \\
= & \operatorname{Pr}\left(W_{i t}+1>0 \mid W_{j t}>0\right) \operatorname{Pr}\left(W_{j t}>0\right) \\
& +\operatorname{Pr}\left(W_{i t}>0\right) \operatorname{Pr}\left(W_{j t} \leq 0 \mid W_{i t}>0\right) \\
& +\left(1-\pi_{d}\right) \operatorname{Pr}\left(-1<W_{i t} \leq 0,-1<W_{j t} \leq 0\right) \\
\equiv & \pi_{i} .
\end{aligned}
$$

If the joint distribution of $u_{1 t}$ and $u_{2 t}$ and, therefore, also that of $W_{1 t}$ and $W_{2 t}$ has positive support over \mathbb{R}^{2}, then at least $\operatorname{Pr}\left(W_{i t}+1>0 \mid W_{j t}>0\right) \neq 0$ and $\operatorname{Pr}\left(W_{j t}>0\right) \neq 0$. Hence, $\pi_{i}>0$.

In order to see that $\pi_{i}<1$ consider

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i t}>0\right)= & 1-\operatorname{Pr}\left(Y_{i t} \leq 0\right) \\
= & 1-\operatorname{Pr}\left(W_{i t}+1 \leq 0 \mid W_{j t}>0\right) \operatorname{Pr}\left(W_{j t}>0\right) \\
& +\operatorname{Pr}\left(W_{i t} \leq 0 \mid W_{j t} \leq-1\right) \operatorname{Pr}\left(W_{j t} \leq-1\right) \\
& +\operatorname{Pr}\left(-1<W_{j t} \leq 0\right) \operatorname{Pr}\left(W_{i t} \leq-1\right) \\
& +\pi_{d} \operatorname{Pr}\left(-1<W_{i t} \leq 0,-1<W_{j t} \leq 0\right) .
\end{aligned}
$$

Again, if the joint distribution of $u_{1 t}$ and $u_{2 t}$ and, therefore, also that of $W_{1 t}$ and $W_{2 t}$ has positive support over \mathbb{R}^{2}, then at least $\operatorname{Pr}\left(W_{i t}+1 \leq 0 \mid W_{j t}>0\right) \neq$ 0 and $\operatorname{Pr}\left(W_{j t}>0\right) \neq 0$, which is sufficient to ensure that $\pi_{i}<1$

Note that the assumption that $\mathbf{x}_{i t}$ and $u_{i t}$ are serially uncorrelated is made for expositional convenience and strictly speaking not necessary.

Appendix B: Simulation of $\mathrm{E}\left(u_{2 t} \mathrm{I}\left(y_{1 t}-c_{1}\right)\right)$

Table A reports the simulated values of $\mathrm{E}\left[u_{2 t} \mathrm{I}\left(y_{1 t}-c_{1}\right)\right]$ using the sample equivalent $\sum_{t=1}^{T}\left[u_{2 t} \mathrm{I}\left(y_{1 t}-c_{1}\right)\right] / T$ with $T=2,000,000$. The data are generated from the reduced form of the model given by Equations (13) and (14) with $k=1, x_{i t}, u_{i t} \sim \operatorname{iid} \mathrm{~N}(0,1), \operatorname{Pr}\left(d_{t}=1\right)=0.50$, and $c_{i}=1.64$. It can be seen that only for $\rho=\beta=0$ the simulated value is zero. Similar results are also obtained for other choices of the solution indicator, d_{t}, namely $d_{t}=0$, or $d_{t}=1$.

Appendix C: Details of the ERW Data Set

The data set used by Eichengreen et al. (1996) is available on the internet at http://haas.berkeley.edu/~arose/RecRes.htm along with a Stata log file.
"The data set is quarterly, spanning 1959 through 1993 for twenty industrial countries." (Eichengreen et al. 1996, p. 477) The countries are the USA, UK, Austria, Belgium, Denmark, France, Italy, Netherlands, Norway, Sweden, Switzerland, Canada, Japan, Finland, Greece, Ireland, Portugal, Spain, Australia and Germany as the centre country. "Most of the variables are transformed into differential percentage changes by taking differences between domestic and German annualised fourth-differences of natural logarithms and multiplying by a hundred." (Eichengreen et al. 1996, p. 477).

The variables are: Total non-gold international reserves (IMF IFS line 1ld), exchange rate with US dollar (rf), money market rates (60b) or where unavailable discount rates (60), exports and imports (70 and 71), the current account (80) and the central governments budget position (80) both as percentages of nominal GDP (99a), long term bond yields (61), nominal stock market index (62), domestic credit (32), M1 (34), M2 (35 + M1), CPI (64), real GDP (99a.r), and relative unit labour cost (reu). Further from the OECD's Main Economic Indicators employment and unemployment, and Eichengreen et al. construct "indicators of government electoral victories and defeats, using Keesing's Record of World Events and Banks' Political Handbook of the World." (Eichengreen et al. 1996, p. 477)

Eichengreen et al. use the following definition of the exchange-rate market pressure index

$$
\begin{equation*}
E M P_{i t}=\lambda_{1} \% \Delta e_{i t}+\lambda_{2} \% \Delta\left(r_{i t}-r_{G t}\right)-\lambda_{3}\left(\% \Delta f_{i t}-\% \Delta f_{G t}\right) \tag{32}
\end{equation*}
$$

where $e_{i t}$ is the exchange rate to the US Dollar, $r_{i t}$ the interest rate, and $f_{i t}$ the international reserves of country i. Subscript G indicates variables for

Table A: Simulated Values of $\sum_{t=1}^{T}\left[u_{2 t} \mathrm{I}\left(y_{1 t}-c_{1}\right)\right] / T$

ρ	β		α			
		-4	-1	0	1	4
-0.99	-4	-0.095	-0.143	-0.103	-0.142	-0.096
	-1	-0.092	-0.143	-0.103	-0.142	-0.092
	0	-0.089	-0.142	-0.103	-0.143	-0.088
	1	-0.082	-0.140	-0.103	-0.140	-0.083
	4	-0.054	-0.037	-0.024	-0.039	-0.053
-0.50	-4	-0.056	-0.077	-0.052	-0.077	-0.056
	-1	-0.050	-0.075	-0.052	-0.075	-0.050
	0	-0.045	-0.072	-0.052	-0.072	-0.044
	1	-0.036	-0.051	-0.040	-0.051	-0.037
	4	-0.011	0.030	0.023	0.031	-0.011
0.00	-4	-0.018	-0.017	-0.005	-0.017	-0.017
	-1	-0.007	-0.010	-0.004	-0.010	-0.008
	0	0.000	0.000	-0.000	0.000	-0.000
	1	0.008	0.040	0.045	0.041	0.008
	4	0.032	0.089	0.060	0.090	0.032
0.50	-4	0.022	0.035	0.026	0.035	0.021
	-1	0.036	0.053	0.036	0.052	0.036
	0	0.045	0.072	0.052	0.072	0.045
	1	0.055	0.128	0.135	0.128	0.055
	4	0.075	0.134	0.082	0.134	0.074
0.99	-4	0.060	0.078	0.010	0.078	0.060
	-1	0.078	0.112	0.047	0.112	0.079
	0	0.089	0.142	0.103	0.142	0.089
	1	0.099	0.208	0.213	0.207	0.099
	4	0.114	0.165	0.070	0.166	0.115

The results are from data generated according to equations (13) and (14), with $k=1, x_{i t}, u_{i t} \sim \operatorname{iid} \mathrm{~N}(0,1), \operatorname{Pr}\left(d_{t}=1\right)=0.5, c_{i}=1.64$, and $T=2,000,000$.

Germany, which is taken as the center country. Eichengreen et al. (1996, pp.476) say that they "weight the components so as to equalize the volatility of the three components". This is accomplished by setting $\lambda_{i}=1 / \sigma_{i}$, where σ_{i} is the standard deviation of component i. For this data set $\sigma_{1}=0.243$, $\sigma_{2}=0.037$, and $\sigma_{3}=0.0047$.

The crisis index is the calculated as

$$
y_{i t}= \begin{cases}1 & E M P_{i t}>\mu_{E M P}+1.5 \sigma_{E M P} \\ 0 & \text { otherwise }\end{cases}
$$

where $\mu_{E M P}$ is the mean and $\sigma_{E M P}$ is the standard deviation of the exchange
rate market pressure index.
The credit growth, the inflation rate, the output growth and the current account are calculated as

$$
\begin{equation*}
d x_{i t}=100 * \ln \left(x_{i t} / x_{i t-4}\right)-\ln \left(x_{G t} / x_{G t-4}\right), \tag{33}
\end{equation*}
$$

where $x_{i t}$ is the variable for country i and Germany, G. The relative unemployment rate is $d x_{i t}=x_{i t}-x_{G t}$. The relative budget position is defined as $d b_{i t}=b_{i t} / y_{i t}-b_{G t} / y_{G t}$, where $b_{i t}$ is the nominal government budget of country $i, y_{i t}$ is the GDP of country i and Germany, G. The dummies for capital controls, government electoral victory and government electoral loss are not transformed. The other variables mentioned above are not used.
"To avoid counting the same crisis more than once, we exclude the later observation(s) when two (or more) crises occur in successive quarters." (Eichengreen et al. 1996, p.476) Country by country excluding time periods with missing data results in 645 observations for 17 countries with 56 crises observations. The countries are the USA, the UK, Austria, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Canada, Japan, Finland, Greece, Ireland, Portugal, Spain, and Australia.

References

Allen, Franklin and Douglas Gale (2000), 'Financial contagion', Journal of Political Economy, 108(1), 1-33.
Amemiya, Takeshi (1985) Advanced Econometrics (Oxford: Basil Blackwell)
Bae, Kee-Hong, G. Andrew Karolyi, and René M. Stulz (2003) 'A new approach to measuring financial contagion.' Review of Financial Studies, 16(3), 717-763
Boyer, Brian H., Michael S. Gibson, and Mico Loretan (1999) 'Pitfalls in tests for changes in correlation.' Federal Reserve Board International Finance Discussion Paper 597
Caramazza, Francesco, Luca Ricci, and Ranil Salgado (2004) 'International financial contagion in currency crises.' Journal of International Money and Finance, 23(1), 51-70
Corsetti, Giancarlo, Marcello Pericoli, and Massimo Sbracia (2005) "Some contagion, some interdependence': More pitfalls in tests of financial contagion.' Journal of International Money and Finance, 24(8), 1177-1199
Cragg, John G., and Stephen G. Donald (1993) 'Testing the identifiability and specification in instrumental variable models.' Econometric Theory, 9, 222-240
Dungey, Mardi, Renée Fry, Brenda González-Hermosillo and Vance L. Martin (2005) 'Empirical modelling of contagion: A review of methodologies.', Quantitative Finance, 5(1), 9-24

Dornbusch, Rudiger, Yung Chul Park, and Stijn Claessens (2000) 'Contagion: Understanding how it spreads.' World Bank Research Observer, 15(2), 177-97
Eichengreen, Barry, Andrew K. Rose, and Charles Wyplosz (1996) 'Contagious currency crises: First tests.' Scandinavian Journal of Economics, 98(4), 463-484
Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling Extremal Events for Insurance \& Finance (Berlin: Springer Verlag)
Esquivel, Gerardo, and Felipe Larraín B. (1998) ‘Explaining currency crises.' mimeo, Harvard University
Favero, Carlo, A. and Francesco Giavazzi (2002) 'Is the international propagation of financial shocks non-linear? Evidence from the ERM.' Journal of International Economics, 57, 231-246
Forbes, Kristin, and Roberto Rigobon (2001) 'Measuring contagion: Conceptual and empirical issues.' In International Financial Crises, ed. Stijn Claessens and Kristin J. Forbes (Boston: Kluwer) pp. 43-66
_ (2002) 'No contagion, only interdependence: Measuring stock market co-movements.' Journal of Finance 57(5), 2223-2261
Glick, Reuven, and Andrew K. Rose (1999) 'Contagion and trade: Why are currency crises regional?' Journal of International Money and Finance, 18(4), 603-617
Gourieroux, C., J. J. Laffont, and A. Monfort (1980) 'Coherency conditions in simultaneous linear equation models with endogenous switching regimes.' Econometrica, 48(3), 675-695
Hsiao, Cheng (2003) Analysis of Panel Data, 2nd edition (Cambridge: Cambridge University Press)
Kaminsky, Graciela L. and Carmen M. Reinhart (2000) 'On crises, contagion and confusion.' Journal of International Economics, 51(1), 145-168
Kelejian, Harry, H. (1971), 'Two-stage least squares and econometric systems linear in parameters but nonlinear in the endogenous variable.' Journal of the American Statistical Association, 66(334), 373-374
King, Mervyn A. and Sushil Wadhwani (1990) 'Transmission of volatility between stock markets.' Review of Financial Studies, 3(1), 5-33
Kruger, Mark, Patrick N. Osakwe, and Jennifer Page (1998) 'Fundamentals, contagion and currency crises: An empirical analysis' Bank of Canada Working Paper 98-10
Kumar, Mohan, Uma Moorthy, and William Perraudin (2002) 'Predicting emerging market currency crashes.' Journal of Empirical Finance, 10(4), 471-491
Lewbel, Arthur (2006) 'Coherence and completeness of structural models containing a dummy endogeneous variable.' forthcoming in International Economic Review
Loretan, Mico, and William B. English (2000) 'Evaluating "correlation breakdowns" during periods of market volatility.' In International Finan-
cial Markets and the Implication for Monetary and Financial Stability, ed. Bank for International Settlements (Basle: Bank for International Settlements)
Masson, Paul R. (1999) 'Contagion: Monsoonal effects, spillovers, and jumps between multiple equilibria.' In The Asian Crises: Causes, Contagion and Consequences, ed. P. Agénor, M. Miller, and D. Vines (Cambridge: Cambridge University Press)
Newey, Whitney K. (1990) 'Efficient instrumental variable estimation of nonlinear models.' Econometrica, 58(4), 809-837
Pericoli, Marcello, and Massimo Sbracia (2002) 'A primer on financial contagion.' Journal of Economic Surveys, 17(4), 571-608
Pesaran, M. Hashem (2005) 'Estimation and inference in large heterogeneous panels with a multifactor error structure.' forthcoming in Econometrica
Sachs, Jeffrey, Aaron Tornell and Andrés Velasco (1996) 'Financial crises in emerging markets: The lessons from 1995^{\prime} Brookings Papers on Economic Activity 1, 147-215
Stock, James H., and Motohiro Yogo (2005) 'Testing for weak instruments in linear IV regressions.' In Identification for Econometric Models: Essays in the Honor of Thomas Rothenberg, ed. D. W. K. Andrews and J. H. Stock (Cambridge: Cambridge University Press), pp. 80-108
Stone, Mark R., and Melvyn Weeks (2001) 'Systemic financial crises, balance sheets, and model uncertainty.' IMF Working Paper 01/162
Table 3: Bias, RMSE, and Power of the Contagion Coefficient in a Probit Model (ϕ_{i}

	$T=$	20			50				100			
γ	$N=10$	20	50	100	10	20	50	100	10	20	50	100
Bias												
0	-1.996	-0.608	-0.029	0.136	-1.108	-0.071	-0.011	0.076	-0.316	-0.015	-0.011	0.014
0.2	-1.914	-0.471	0.051	0.224	-0.951	-0.004	0.075	0.170	-0.217	0.042	0.081	0.132
0.4	-1.564	-0.279	0.256	0.399	-0.659	0.166	0.273	0.370	-0.038	0.194	0.272	0.368
0.6	-1.094	0.049	0.495	0.624	-0.334	0.367	0.502	0.598	0.212	0.402	0.496	0.607
0.8	-0.733	0.248	0.691	0.835	-0.097	0.573	0.688	0.812	0.413	0.581	0.683	0.804
1	-0.563	0.438	0.899	1.003	0.155	0.730	0.850	0.993	0.585	0.743	0.852	0.981
RMSE												
0	3.165	1.822	0.466	0.684	2.297	0.563	0.261	0.291	1.161	0.262	0.183	0.218
0.2	3.159	1.683	0.468	0.647	2.164	0.590	0.275	0.340	1.130	0.263	0.201	0.260
0.4	2.960	1.635	0.537	0.710	1.974	0.517	0.384	0.476	1.015	0.345	0.332	0.424
0.6	2.835	1.536	0.711	0.868	1.818	0.581	0.580	0.666	0.888	0.486	0.534	0.641
0.8	2.697	1.614	0.873	1.040	1.765	0.761	0.752	0.865	0.930	0.644	0.713	0.830
1	2.651	1.730	1.093	1.146	1.688	0.875	0.906	1.038	0.956	0.798	0.880	1.003
Rejection probability												
0	0.078	0.102	0.110	0.136	0.087	0.116	0.123	0.173	0.097	0.112	0.114	0.151
0.2	0.086	0.123	0.156	0.205	0.117	0.142	0.197	0.294	0.121	0.163	0.251	0.336
0.4	0.121	0.182	0.286	0.385	0.177	0.254	0.455	0.601	0.228	0.351	0.641	0.764
0.6	0.183	0.277	0.487	0.599	0.269	0.450	0.767	0.865	0.374	0.663	0.932	0.973
0.8	0.245	0.395	0.647	0.760	0.363	0.659	0.910	0.966	0.562	0.851	0.986	0.998
1	0.295	0.458	0.754	0.872	0.458	0.756	0.967	0.993	0.655	0.940	0.998	0.999

Table 4: Bias, RMSE, and Power of the Contagion Coefficient in an OLS Model (ϕ_{i}

	T =	20			50				100			
γ	$N=10$	20	50	100	10	20	50	100	10	20	50	100
Bias												
0	-0.006	-0.002	-0.010	-0.000	-0.002	0.002	-0.004	0.002	0.001	-0.002	-0.001	-0.001
0.2	0.055	0.065	0.081	0.124	0.061	0.066	0.083	0.122	0.059	0.064	0.086	0.124
0.4	0.207	0.212	0.264	0.348	0.198	0.212	0.267	0.347	0.200	0.216	0.268	0.354
0.6	0.370	0.394	0.448	0.558	0.359	0.390	0.469	0.554	0.364	0.396	0.461	0.556
0.8	0.540	0.550	0.617	0.712	0.521	0.563	0.616	0.712	0.530	0.552	0.622	0.715
1	0.675	0.675	0.754	0.841	0.657	0.688	0.754	0.842	0.671	0.690	0.750	0.842
RMSE												
0	0.182	0.110	0.081	0.086	0.118	0.068	0.048	0.052	0.081	0.048	0.032	0.040
0.2	0.215	0.158	0.147	0.206	0.148	0.110	0.110	0.156	0.108	0.086	0.100	0.143
0.4	0.332	0.288	0.318	0.414	0.262	0.245	0.289	0.374	0.235	0.233	0.280	0.367
0.6	0.484	0.462	0.498	0.616	0.412	0.418	0.487	0.575	0.392	0.412	0.471	0.566
0.8	0.645	0.615	0.663	0.763	0.571	0.592	0.636	0.732	0.554	0.566	0.631	0.725
1	0.775	0.741	0.801	0.888	0.705	0.714	0.773	0.860	0.694	0.703	0.759	0.851
Rejection probability												
0	0.053	0.049	0.046	0.070	0.052	0.060	0.056	0.066	0.056	0.057	0.053	0.071
0.2	0.127	0.219	0.389	0.507	0.160	0.305	0.561	0.683	0.204	0.424	0.746	0.840
0.4	0.354	0.574	0.808	0.861	0.521	0.798	0.963	0.971	0.714	0.954	0.997	0.998
0.6	0.604	0.828	0.938	0.960	0.807	0.967	0.998	0.999	0.949	0.998	1.000	1.000
0.8	0.770	0.913	0.987	0.983	0.918	0.996	1.000	1.000	0.992	1.000	1.000	1.000
1	0.857	0.952	0.994	0.997	0.965	0.999	1.000	1.000	0.998	1.000	1.000	1.000

[^8]Table 5: Bias, RMSE, and Power of the Contagion Coeffient in a Probit Model $\left(\phi_{i}=0.5\right)$

	$T=$		20									
γ	$N=10$	20	50	100	10	20	50	100	10	20	50	100
						Bias						
0	-1.231	-0.234	-0.023	-0.007	-0.324	-0.027	-0.010	-0.006	-0.072	-0.015	-0.001	-0.014
0.2	-1.110	-0.141	0.060	0.123	-0.269	0.028	0.068	0.067	0.009	0.052	0.078	0.091
0.4	-0.782	-0.014	0.268	0.304	-0.030	0.184	0.251	0.293	0.144	0.213	0.254	0.306
0.6	-0.495	0.228	0.470	0.529	0.169	0.378	0.475	0.532	0.337	0.400	0.457	0.517
0.8	-0.205	0.429	0.635	0.771	0.382	0.549	0.640	0.726	0.511	0.564	0.644	0.729
1	0.135	0.616	0.850	0.966	0.494	0.724	0.800	0.893	0.663	0.704	0.802	0.898
						RMSE						
0	2.613	1.137	0.487	0.648	1.261	0.327	0.253	0.291	0.548	0.219	0.175	0.200
0.2	2.605	1.084	0.480	0.715	1.198	0.331	0.263	0.292	0.435	0.225	0.193	0.213
0.4	2.507	1.220	0.610	0.721	1.089	0.392	0.365	0.402	0.430	0.315	0.313	0.360
0.6	2.327	1.125	0.764	0.816	1.037	0.544	0.555	0.604	0.543	0.468	0.496	0.557
0.8	2.321	1.318	0.912	1.049	1.024	0.664	0.710	0.782	0.667	0.619	0.677	0.756
1	2.372	1.505	1.096	1.246	1.165	0.843	0.865	0.943	0.781	0.756	0.833	0.923
Rejection probability												
0	0.071	0.082	0.094	0.082	0.103	0.099	0.103	0.128	0.105	0.096	0.118	0.113
0.2	0.089	0.125	0.148	0.145	0.118	0.136	0.169	0.192	0.151	0.162	0.235	0.271
0.4	0.139	0.198	0.282	0.298	0.216	0.291	0.441	0.494	0.254	0.431	0.615	0.716
0.6	0.199	0.292	0.465	0.523	0.329	0.504	0.748	0.820	0.488	0.720	0.906	0.948
0.8	0.271	0.397	0.584	0.687	0.465	0.678	0.872	0.950	0.670	0.883	0.989	0.995
1	0.330	0.496	0.710	0.799	0.549	0.803	0.944	0.988	0.773	0.951	0.998	1.000

See footnote of Table 3.
Table 6: Bias, RMSE, and Power of the Contagion Coefficient in an OLS Model $\left(\phi_{i}=0.5\right)$

	T =	20			50				100			
γ	$N=10$	20	50	100	10	20	50	100	10	20	50	100
Bias												
0	-0.006	-0.005	-0.003	-0.005	0.001	0.002	-0.001	-0.002	0.001	-0.003	-0.001	-0.002
0.2	0.052	0.059	0.069	0.081	0.054	0.061	0.069	0.080	0.058	0.061	0.072	0.082
0.4	0.198	0.212	0.237	0.256	0.206	0.208	0.230	0.263	0.202	0.210	0.235	0.262
0.6	0.378	0.374	0.411	0.437	0.364	0.383	0.416	0.446	0.368	0.387	0.412	0.446
0.8	0.542	0.521	0.558	0.604	0.536	0.540	0.575	0.599	0.524	0.541	0.568	0.605
1	0.667	0.667	0.684	0.723	0.653	0.670	0.694	0.728	0.667	0.670	0.699	0.732
RMSE												
0	0.183	0.114	0.076	0.069	0.114	0.068	0.044	0.040	0.081	0.050	0.032	0.028
0.2	0.218	0.158	0.136	0.156	0.140	0.108	0.098	0.112	0.110	0.087	0.088	0.098
0.4	0.320	0.291	0.297	0.327	0.265	0.242	0.256	0.288	0.234	0.227	0.247	0.275
0.6	0.483	0.448	0.462	0.497	0.413	0.415	0.436	0.469	0.394	0.403	0.423	0.458
0.8	0.648	0.594	0.612	0.660	0.580	0.567	0.596	0.620	0.548	0.555	0.579	0.615
1	0.767	0.739	0.739	0.776	0.699	0.700	0.716	0.748	0.690	0.686	0.709	0.743
Rejection probability												
0	0.047	0.050	0.054	0.060	0.061	0.056	0.047	0.041	0.061	0.051	0.060	0.049
0.2	0.120	0.208	0.345	0.459	0.153	0.294	0.486	0.604	0.223	0.399	0.675	0.761
0.4	0.336	0.564	0.754	0.788	0.551	0.782	0.921	0.954	0.738	0.936	0.993	0.997
0.6	0.615	0.792	0.920	0.935	0.823	0.961	0.997	0.996	0.959	0.998	1.000	1.000
0.8	0.765	0.895	0.970	0.972	0.947	0.994	1.000	1.000	0.994	1.000	1.000	1.000
1	0.853	0.941	0.984	0.991	0.972	0.997	0.999	1.000	0.999	1.000	1.000	1.000

See footnote of Tables 3 and 4.

Table 7: Bias, RMSE, Power of the Contagion Coefficient (ERW Data)

	Probit			OLS		
γ	Bias	RMSE	$[t>c]$	Bias	RMSE	$[t>c]$
0	-0.012	0.245	0.123	-0.005	0.095	0.072
0.2	0.069	0.247	0.212	0.079	0.127	0.289
0.4	0.282	0.375	0.535	0.276	0.300	0.887
0.6	0.528	0.588	0.858	0.492	0.510	0.996
0.8	0.774	0.822	0.977	0.696	0.711	1.000
1	0.998	1.042	0.996	0.863	0.875	1.000

Data are generated from $y_{i t}^{r}=\hat{\alpha}_{0}+\hat{\boldsymbol{\alpha}}^{\prime} \mathbf{x}_{i t}+\varepsilon_{i t}^{r}$, where $\mathbf{x}_{i t}$ are the data of ERW, and $\hat{\alpha}_{0}$ and $\hat{\boldsymbol{\alpha}}$ the respective probit estimates of the parameters. $\varepsilon_{i t}^{r}=\gamma_{i}^{r} f_{t}^{r}+u_{i t}^{r}$, where $\gamma_{i}^{r} \sim \mathrm{U} \frac{1}{2} \gamma, \frac{3}{2} \gamma$, $f_{t}^{r}, u_{i t}^{r} \sim \operatorname{iid} \mathrm{~N}(0,1)$. The probit estimations use a discretised dependent variable, $\kappa_{i t}^{r}=\mathrm{I}\left(y_{i t}^{r}\right)$, and the OLS estimations the continuous dependent variable, $y_{i t}^{r}$. For the estimations, a spurious contagion dummy was added and the common factor was ignored. The results in the table are for the contagion coefficient, $\hat{\beta}$. Reported are the bias, the root mean square error, and the one-sided rejection probability denoted $[t>c]$, which are defined in the footnote of Table 3.

Table 8: OLS and GIVE Estimates of the Contagion Coefficients in the Interest Rates Spreads Equations

	NL	FR	IT	ES	DK	SW	BG
OLS							
β^{+}	0.046	0.098	0.128	0.165	0.025	0.056	0.104
t	1.862	3.242	1.604	4.090	0.437	0.705	3.729
β^{-}	-0.064	-0.090	-0.097	-0.088	-0.178	-0.185	-0.080
t	2.541	2.792	1.126	1.934	2.908	2.229	2.683
GIVE, $m=1$							
β^{+}	-0.160	0.230	0.109	0.310	-0.471	-0.036	0.291
t	1.274	1.678	0.277	1.501	1.735	0.107	1.923
β^{-}	-0.142	-0.017	0.294	-0.114	0.178	0.409	0.038
t	0.922	0.130	0.973	0.798	0.594	1.189	0.325
g	0.463	0.798	0.639	0.547	0.987	1.150	0.658
GIVE, $m=2$							
β^{+}	-0.059	0.171	0.032	0.051	-0.329	-0.335	0.191
t	0.851	2.174	0.142	0.475	1.640	1.533	2.134
β^{-}	0.022	-0.070	0.008	0.016	0.146	0.370	0.016
t	0.366	0.878	0.038	0.175	0.851	1.532	0.256
g	1.136	1.044	1.016	1.081	0.862	1.117	0.828
GIVE, $m=3$							
β^{+}	-0.024	0.126	0.052	0.123	-0.332	-0.079	0.180
t	0.443	1.997	0.303	1.438	2.398	0.471	2.903
β^{-}	0.002	-0.092	-0.005	-0.018	0.041	0.259	-0.024
t	0.030	1.394	0.025	0.222	0.294	1.276	0.457
g	1.166	0.987	1.005	1.117	1.134	0.901	1.130
GIVE, $m=4$							
β^{+}	-0.010	0.122	0.083	0.166	-0.240	-0.007	0.163
t	0.224	2.356	0.542	2.224	2.079	0.054	3.118
β^{-}	-0.007	-0.062	-0.043	-0.057	-0.113	-0.024	-0.053
t	0.158	1.126	0.272	0.838	0.992	0.143	1.081
g	1.278	1.251	1.086	1.153	1.098	1.007	1.189
GIVE, $m=5$							
β^{+}	0.009	0.099	0.183	0.145	-0.148	0.118	0.171
t	0.225	2.117	1.361	2.113	1.474	0.908	3.701
β^{-}	-0.022	-0.054	-0.066	-0.061	-0.115	-0.080	-0.046
t	0.506	1.022	0.445	0.915	1.088	0.518	0.988
g	1.213	1.258	1.116	1.114	1.098	0.869	1.224
GIVE, $m=6$							
β^{+}	0.017	0.079	0.161	0.148	-0.129	0.155	0.170
t	0.472	1.805	1.275	2.330	1.386	1.268	4.045
β^{-}	-0.039	-0.028	-0.033	-0.014	-0.136	-0.145	-0.037
t	0.966	0.568	0.241	0.232	1.391	1.018	0.834
g	1.094	1.196	1.087	1.115	1.027	0.853	1.292

The source of the intererst rates spreads is Favero and Giavazzi (2002). The countries are The Netherlands (NL), France (FR), Italy (IT), Spain (SP), Denmark (DK), Sweden (SW), and Belgium (BG). t denotes the absolute t-value, g the Cragg-Donald statistic, and m the maximum power for the polynomial approximation of the instruments.

[^0]: *We would like to thank Mardi Dungey, Teresa Leitão, Roger Moon, Geert Rider, Til Schuermann and participants at the CERF Seminar, "International Financial Contagion", University of Cambridge, and seminars at the University of Southern California and the Tinbergen Institute, Amsterdam, for helpful comments. Constructive comments and suggestions by two anonymous referees and the editor (Peter Ireland) have also been most helpful to us. The main part of the research for this paper was done while the second author was a graduate student at the University of Cambridge. The views expressed in this paper are those of the authors and do not necessarily reflect those of the De Nederlandsche Bank.
 ${ }^{\dagger}$ hashem.pesaran@econ.cam.ac.uk
 \ddagger andreas.pick@cantab.net

[^1]: ${ }^{1}$ The parameters of the model, including the threshold coefficients, c_{1} and c_{2}, can also be estimated by the maximum likelihood method. This is, however, beyond the scope of the present paper.

[^2]: ${ }^{2}$ See Pesaran (2005) for a general discussion of the analysis of cross-sectional dependence in large panels.

[^3]: ${ }^{3}$ The problem of sample selection bias also applies to other approaches, such as that of Glick and Rose (1999) and Caramazza, Ricci and Salgado (2004), who select only crises periods to study contagion.

[^4]: ${ }^{4}$ The problem of simultaneity also affects other approaches. Kaminsky and Reinhart (2000) add a contagion index similar to that of ERW to the macroeconomic variables on the right hand side to explain the probability of currency crises.

[^5]: ${ }^{5}$ We have also performed Monte Carlo experiments with $k=1$, and the results for the contagion parameter are unchanged. In order to keep the presentation concise we only report the experiments with $k=2$.

[^6]: ${ }^{6}$ We thank Carlo Favero for providing us with the data.

[^7]: ${ }^{7}$ Another possible option would have been to include the $\Delta y_{j t}, j=1,2, \ldots N, j \neq i$ in the right hand side of the regression. However, this model lead to a loss in power in the estimation and all coefficients were inconsistent.

[^8]: $y_{i t}^{r}$.

