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Abstract

This paper presents a canonical, econometric model of contagion
and investigates the conditions under which contagion can be distin-
guished from interdependence. In a two-market set up it is shown
that for a range of fundamentals the solution is not unique, and for
sufficiently large values of the contagion coefficients it has interesting
bifurcation properties with bimodal density functions. The identifica-
tion of contagion requires that the equations for the individual markets
contain market specific regressors. This sheds doubt on the general va-
lidity of the correlation based tests of contagion recently proposed in
the literature which do not involve any market specific variables. Fur-
thermore, we show that ignoring endogeneity and interdependence can
introduce an upward bias in the estimate of the contagion coefficient,
and using Monte Carlo experiments we further show that this bias
could be substantial. Finally, we analyse data on European interest
rates spreads during the ERM and find a clear asymmetry in the con-
tagion effects of sharp rises and falls; with only the former having some
statistically significant effects.
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1 Introduction

It has been frequently observed that financial crises appear in clusters. There
exists now a large body of literature that attempts to distinguish between
contagion and interdependence. This literature has been reviewed by Dorn-
busch, Park, and Claessen (2000), Pericoli and Sbracia (2002), and Dungey,
Fry, Gonzalez-Hermosillo and Martin (2005). The theoretical literature on
financial crises considers a number of reasons for crises to appear in clusters.
Masson (1999) identifies three categories under which the different theories
can be subsumed. First, the theory of “monsoonal effects” suggests that
financial crises appear to be contagious because underlying macroeconomic
variables are correlated. Second, financial crises may be transmitted be-
tween countries via “spill-overs”: a crisis affects another country through
external links such as trade. Finally, the theory of “pure contagion” holds
that the market jumps from a “good” to a “bad” equilibrium.

The first two cases, monsoonal effects and spill-overs, are examples of
interdependence. Crises resulting from interdependence could, in principle,
be predictable using macroeconomic fundamentals. If the interdependence
during non-crises periods is known, the effect of a financial crisis in one
country on the likelihood of a crisis in another country can be evaluated.
The third case, jumps between equilibria, is what we refer to as contagion
in this paper: a largely unpredictable, higher correlation during crises times
compared to normal times. This definition of contagion means that a crisis
in one country increases the likelihood of a crisis in another country over and
above what would be implied by the interdependence that prevails between
these countries in non-crises times. This definition corresponds to that given,
for example, by Forbes and Rigobon (2001, 2002).

The distinction between contagion and interdependence has important
implications. Investors need to adjust their portfolios accordingly if markets
have a higher correlation during crises as diversification of portfolios across
markets might be less useful than anticipated if based on correlations in
tranquil times. Equally, the policy responses to a crisis will depend on the
perceived nature of transmission of shocks across the financial markets. If
the cause of a crisis is a random jump between equilibria, i. e. contagion,
policy intervention could be effective. In contrast, if a crisis spreads to
other markets because the fundamentals are correlated, then policy-makers
are less likely to be able to prevent a crisis from spreading.

In this paper we propose a canonical model of contagion that allows for
all the three different causes of crises: first, country or market specific shocks,
second, common observed or unobserved factors, i. e. interdependence, and,
third, higher correlation during crises times, i. e. contagion. Furthermore,
we characterise the solution of the model and we find that the solution is
not unique for a range of fundamentals. For sufficiently large values of the
contagion coefficients the solution has interesting bifurcation properties with
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bimodal density functions.
In section 3 we discuss the problems of identification and estimation of

the contagion coefficients in the canonical model. The estimation is shown
to be an example of the general problem of inference in the non-linear si-
multaneous equation models. To identify contagion effects in the presence
of inter-dependencies the equations for the individual markets or countries
must contain country (market) specific variables. The extension to a multi-
country or -market model is considered in section 4.

In view of our discussion of the canonical model and its properties we
reconsider the extant empirical literature on contagion in section 5. A set of
papers examines contagion of financial markets by testing for higher corre-
lation between markets during crises times, inter alia, King and Wadhwani
(1990), Boyer, Gibson, and Loretan (1999), Loretan and English (2000),
Forbes and Rigobon (2002), Bae, Karolyi and Stulz (2003), and Corsetti,
Pericoli and Sbracia (2005). However, pure correlation-based tests for con-
tagion cannot be valid. Country specific regressors are needed to distinguish
contagion from interdependence. The correlation based tests of contagion
recently proposed in the literature attempt to overcome the identification
problem by assuming that, first, the crises periods can be identified a priori,
and that, second, such episodes are sufficiently prolonged and contiguous so
that cross-country (market) correlations during crisis and non-crisis periods
can be consistently estimated and compared. These are strong assumptions
that are unlikely to hold in practice and their implementation tends to be
subject to a sample selection bias. Such correlation analyses are ex post in
nature and are therefore not helpful if the focus of the analysis is to develop
an early warning system for policy use.

Favero and Giavazzi (2002) develop a test of contagion using a simulta-
neous equation framework to distinguish interdependence from contagion,
but continue to rely on ex post identification of crisis from non-crisis peri-
ods. They also require that the identified set of crisis periods (dummies)
can be classified into those that are common to all markets under consid-
eration and those that are market specific. The test of contagion is then
carried out by checking the significance of country specific crisis dummies
(treated as predetermined) in equations for other countries. Favero and Gi-
avazzi’s framework is closer to our modelling approach, but is still subject
to the sample selection bias, and cannot be used for forecasting or for the
development of early warning systems.

A second set of papers has been based on the literature on the macroeco-
nomic causes of currency crises, for example Eichengreen, Rose, and Wyplosz
(ERW) (1996), Esquivel and Larráın (1998), Kruger, Osakwe, and Page
(1998), Stone and Weeks (2001), and Kumar, Moorthy, and Perraudin
(2002). We show that ignoring the endogeneity of the contagion indica-
tor and/or interdependence of the error terms can introduce an upward bias
in the estimate of the contagion coefficient, and using Monte Carlo experi-
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ments we further show that this bias could be substantial. Our simulations
also suggest that the contagion coefficient of 0.54 obtained from pooled pro-
bit estimation of ERW’s model could be due to neglected interdependencies
rather than contagion.

In section 6 we estimate a two-sided version of the contagion model ad-
vanced in this paper using weekly observations on three month interest rates
spreads (relative to German rates) for seven European economies, analysed
previously by Favero and Giavazzi (2002). In our set up identification of
crises is endogenized and their effects are estimated simultaneously with the
coefficients of interdependence of the spreads in normal periods. We find
a clear asymmetry in the contagion effects of sharp rises and sharp falls in
interest rates spreads; with only the former having some statistically signif-
icant effects.

2 A Canonical Model of Contagion: A Two-Country
Framework

Consider the following relations

y1t = δ′1zt + α′1x1t + β1I(y2t − c2σ2,t−1) + u1t (1)
y2t = δ′2zt + α′2x2t + β2I(y1t − c1σ1,t−1) + u2t, (2)

where yit is a performance indicator for country i = 1, 2, t = 1, . . . , T , u1t and
u2t are serially uncorrelated errors with zero means, conditional variances
σ2

u1,t−1 and σ2
u2,t−1 and a non-zero correlation coefficient ρ. While it is in

principle possible to allow for time variations in ρ, such a generalisation
could obscure the properties of the correlation between y1t and y2t. We
show below that Corr(y1t, y2t) could be time varying even if ρ is not. The
regressors, xit, are ki × 1 country-specific observed factors assumed to be
pre-determined and distributed independently of ujt for all i and j. Country-
specific dynamics can be allowed for by including yi,t−1, yi,t−2, . . . in xit. The
s × 1 vector zt contains pre-determined observed common factors, such as
international oil prices. I(A) is an indicator function that takes the value of
unity if A > 0 and zero otherwise,

σ2
i,t−1 = Var (yit | Ωt−1) ,

where Ωt−1 is the information available at time t− 1.
Examples of performance indicators include stock market returns used

by Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbracia (2005), and
the index of “exchange market pressure” employed by Eichengreen, Rose and
Wylosz (1996), which is a weighted average of exchange rate depreciation,
interest rates differential and international reserves ratios. We are assuming
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that yit is defined in such a way that a crisis is associated with extreme
positive values of yit, and ci > 0.

In this set up interdependence is captured through non-zero values of ρ,
and is distinguished from contagion effects characterised by non-zero values
of βi.

• It is assumed that contagion takes place only at times of crises, whilst
interdependence is the result of normal market interactions.

• Country i is said to be in crisis if the performance index, yit, rises
above a threshold value cit.

• Contagion is said to occur if a crisis in country 2 increases the probabil-
ity of a crisis in country 1 over and above the usual market interactions,
and vice versa.

• To test for contagion we first need to establish conditions under which
the contagion coefficients, βi, can be identified. Once such conditions
are met, a test of contagion in country i can be carried out by testing
βi = 0 against the one-sided alternatives, βi > 0 allowing for the
possibility of non-zero ρ.

The above framework can be readily generalised to deal with both ex-
tremes simultaneously,

yit = δ′izt + α′ixit + βiU I(yjt − cjUσj,t−1) + βiLI(−yjt − cjLσj,t−1) + uit,

for i = 1, 2, where βiU and βiL now refer to contagion effects on the upper
and the lower tails and cjUσj,t−1 and cjLσj,t−1 are the associated thresholds
with cjU ≥ 0 and cjL ≥ 0. It is clear that only one of the indicators can be
triggered at a time.

Another possible generalisation would be to consider endogenous switches
in the slope coefficients of the fundamentals (δi, αi) as well as in the inter-
cepts. More specifically, we could have, for example,

yit = δ′izt + α′ixit + (βi + γixit)I(yjt − cjσj,t−1) + uit.

Here we shall focus on the relatively simple model defined in (1) and (2),
but we conjecture that our approach and arguments can be readily extended
to the more general case.

2.1 Solution and Possibility of Multiple Equilibria

Setting
wit = δ′izt + α′ixit + uit,

we re-write (1) and (2) as
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y1t = w1t + β1I(y2t − c2), (3)
y2t = w2t + β2I(y1t − c1), (4)

where to simplify the notations and without loss of generality we abstract
from the (possibly) time varying nature of the thresholds.

This is a system of non-linear and non-differentiable simultaneous equa-
tions and has a simple unique solution when either β1 or β2 is zero. For
example, suppose that β2 = 0. Then the solution is given by

y1t = w1t + β1I(y2t − c2), (5)
y2t = w2t. (6)

When both contagion coefficients are positive the equation system (3)
and (4) can be equivalently written as

Y1t = W1t + I(Y2t), (7)
Y2t = W2t + I(Y1t), (8)

where
Yit =

yit − ci
βi

, Wit =
wit − ci
βi

. (9)

To solve this simplified system we shall consider the following five mutually
exclusive regions in the (W1t,W2t) plane—see also Figure 1:

Region A: W2t > 0,

Region B: −1 < W2t ≤ 0 and W1t > 0,

Region C: W2t ≤ −1,

Region D: −1 < W2t ≤ 0 and W1t < −1,

Region E: −1 < W2t ≤ 0 and −1 < W1t ≤ 0.

It is now easily verified that in regions A and B, the solution for Y1t is
unique and is given by

Y ∗1t = 1 +W1t, (10)

and, similarly, in regions C and D the solution is unique and is given by

Y ∗1t = W1t. (11)

However, in region E the solution is not unique. For example, for W1t =
−1/2, and W2t = −1/3, there are two possible solutions for Yt = (Y1t, Y2t)′

given by

Ya
t =

( −1/2
−1/3

)
and Yb

t =
(

1/2
2/3

)
.
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Figure 1: Regions of W1t and W2t

This problem of coherency has been discussed, for example, by Gourier-
oux, Laffont, and Monfort (1980). In the case of systems of binary choice
equations Lewbel (2006) shows that coherency requires the system to be tri-
angular in each period, although the direction of causality can vary across
the periods. This solution, however, requires information beyond that con-
tained in the model.

Here we extend the model by using the index dt to designate the choice
of the solution when −1 < Wit ≤ 0 we have

Y ∗it(dt) = dtWit + (1− dt)(1 +Wit), for i = 1, 2, (12)

where the “favourable” solution occurs if dt = 1, and the “unfavourable”
solution occurs if dt = 0. Notice that in the present set up the crisis
(unfavourable outcome) is associated with the upper tail (large positive
values). It is clear from Equation (12) that the distribution of Y ∗it(dt) is
a mean mixture of distributions with dt as the selection parameter, and
dt ∼ Bernoulli(π), where π is the probability of Wit being chosen in the
mixture.

This is an interesting example where non-uniqueness arises only if the
fundamentals (as measured by Wit) for both countries (markets) are favour-

7



able but weak (in relation to the threshold values). This appears similar to
the notion of weak fundamentals used by Sachs, Tornell and Velasco (1996).
It is also reasonable to expect that the correlation of Y1t and Y2t would be
higher if the unfavourable solution is chosen as compared to the favourable
one. Simulation results reported below bear this out. However, we leave a
more detailed modelling of dt for future research.

Collecting the various components of the solution given by (10) to (12)
we have

Y1t = (1 +W1t) I (W2t) (Region A)
+ (1 +W1t) I (−W2t) I(1 +W2t) I(W1t) (Region B)
+W1t I(−1−W2t) (Region C)
+W1t I (−W2t) I(1 +W2t) I(−1−W1t) (Region D)
+Y ∗1t(dt) I (−W2t) I(1 +W2t) (Region E)
× I(−W1t) I(1 +W1t)

(13)

and by symmetry

Y2t = (1 +W2t) I (W1t)
+ (1 +W2t) I (−W1t) I(1 +W1t)I(W2t)
+W2t I(−1−W1t) (14)
+W2t I (−W1t) I(1 +W1t) I(−1−W2t)
+ Y ∗2t(dt) I (−W1t) I(1 +W1t) I(−W2t) I(1 +W2t).

In terms of the original variables we obtain

y∗it = βiY
∗
it + cit, for i = 1, 2. (15)

It is important that the above solution is valid even if yi,t−1, yi,t−2, are
included amongst of the individual-specific regressors, xit. This feature con-
siderably enhances the relevance of the model to the analysis of financial
markets that show a mild degree of short term over-shooting.

It is clear that y1t and y2t will be correlated even if w1t and w2t are
independently distributed, i.e. for values of βi > 0, Corr(y1t, y2t) > 0 even
when Corr(w1t, w2t) = 0. For example, consider the simple case of Equa-
tions (5) and (6) where β2 = 0, β1 > 0, and w1t and w2t are independently
distributed. In this case

Cov(y1t, y2t) = β1 [1− F2(c2)] {E (w2t − c2 | w2t > c2)− E (w2t − c2)} ,

and

Corr(y1t, y2t) =
β1 [1− F2(c2t)] {E (w2t − c2 | w2t > c2)− E (w2t − c2)}√

Var(w2t)
{
Var(w1t) + β2

1F2(c2) [1− F2(c2)]
} ,
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Table 1: Moments of the distribution of yt

π = 1 (dt = 1) π = 0 (dt = 0)
β ȳ1 σ(y1) Kurt Corr ȳ1 σ(y1) Kurt Corr

ρ = 0
0.5 0.028 1.00 0.08 0.120 0.030 1.01 0.07 0.127
1.0 0.063 1.05 0.43 0.238 0.107 1.11 0.15 0.319
2.0 0.161 1.24 1.96 0.457 0.863 1.69 −1.13 0.706

ρ = 0.5
0.5 0.033 1.04 0.19 0.576 0.037 1.05 0.15 0.582
1.0 0.073 1.12 0.69 0.641 0.146 1.21 0.12 0.693
2.0 0.172 1.34 1.88 0.734 0.977 1.82 −1.31 0.854
“Kurt” denotes Kurtosis-3 of the distribution of y1t and “Corr” the correlation
between y1t and y2t.

where F2(x) is the cumulative distribution function of w2t. In the extreme
value literature, E(w2t − c2 | w2t > c2) is known as the mean excess function
of w2t, see for example Embrechts, Klüppelberg and Mikosch (1997). This
result provides support for the hypothesis that the degree of the dependence
of y1t and y2t is an increasing function of the degree of the fat-tailedness of
the w2t process. For wit ∼ N(0, 1),

Corr(y1t, y2t) =
β1 [1− Φ(c2)] {E (w2t | w2t > c2)}√

1 + β2
1Φ(c2) [1− Φ(c2)]

> 0, for β1 > 0, c2 > 0.

2.2 Some Numerical Results

Suppose that cit = 1.64 (that corresponds to the upper 95% tail of the
standard normal), let β1 = β2 = β, and

(
w1t

w2t

)
∼ N

(
0,

(
1 ρ
ρ 1

))
.

Using these parameters we can sample the dependent variables and investi-
gate their properties for different values of the contagion coefficient β. The
results reported below are based on 30,000 sampled values of y1t and y2t.

Table 1 reports the moments of y1t and the correlation of y1t and y2t

under the assumption that only one of the mixture distributions is visited.
Note, however, that due to the symmetry of the model the reported moments
also apply to y2t. On the left side of the table the results for π = 1 are
reported and on the right side the results for π = 0.

Rather than choosing only one part of the mixture in (15) one can also
consider intermediate cases where both parts of the mixture are visited. Be-
low we set π = 0.5 by sampling dt = I(st) where st ∼ N(0, 1). In this case
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Figure 2: Scatter plot of y1 on y2, and histogram of y1 with normal curve
(β = 2, ρ = 0.8, π = 0.5)

one obtains very pronounced bimodal distributions for y∗it. A clear polar
separation of solutions emerges when β is large, as can be seen in Figures 2
for β = 2 and ρ = 0.8. More dramatic pictures can be obtained for larger
values of β as in Figure 3. These parameter values are chosen for illustra-
tive purposes and we do not expect to observe such extreme phenomena in
practice. For small values of β the polarisation is very slight and cannot be
revealed by visual inspection. This can be seen in Figures 4, which display
the results for β = 0.5 and ρ = 0.5.

3 Identification and Estimation of the Contagion
Coefficients

The system of equations (1) and (2) represent a two-equation non-linear
simultaneous equation model, which has been studied extensively in the
econometric literature as reviewed, for example, by Amemiya (1985). The
above equation system whilst non-linear in the endogenous variables, yt =
(y1t, y2t)′, is linear in the parameters for known threshold values, c1 and
c2. This somewhat simplifies the identification and estimation problems. In
what follows we focus on this relatively simple case by assuming that c1 and
c2 are known and that the variances σi,t−1 are time invariant and can be
absorbed in ci. The non-uniqueness of the solution itself is no impediment
to identification and/or consistent estimation of the unknown parameters.
As in the case of simultaneous equation models, it is possible to consistently
estimate the parameters of a single equation in a system without necessarily
having to fully specify the system of equations. An additional equation for
dt, is not necessary for the consistent estimation of the contagion coefficients
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Figure 3: Scatter plot of y1 on y2, and histogram of y1 with normal curve
(β = 3.5, ρ = 0.8, π = 0.5)

Figure 4: Scatter plot of y1 on y2, and histogram of y1 with normal curve
(β = 0.5, ρ = 0.5, π = 0.5)
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βi, for example. However, the identification problem becomes much more
complicated and poses new challenges if the focus of the analysis is also
on the identification of the dt process itself. This is beyond the scope of
the present paper and will not be addressed. Instead, our focus will be on
identification and consistent estimation of the contagion coefficients.

3.1 Inconsistency of the OLS Estimators

Consider the Ordinary Least Squares (OLS) regressions of yit on zt, xi,t,
I(yjt − cj), for i, j = 1, 2 and for simplicity suppose that the two equa-
tions only contain one country-specific regressor each and assume that these
regressors (x1t, x2) are strictly exogenous, stationary, and distributed inde-
pendently of the errors, u1t and u2t,

y1t = α1x1t + β1I(y2t − c2) + u1t, (16)
y2t = α2x2t + β2I(y1t − c1) + u2t, (17)

where
(
u1t

u2t

)
|x1t, x2t ∼ N

[(
0
0

)
,

(
σ2

u1 ρσu1σu2

ρσu1σu2 σ2
u2

)]
.

Suppose also that probability of crisis occurring in either of the two countries
are neither zero nor unity, namely

T−1
T∑

t=1

I(yjt − cj) → πj , where 1 > πj > 0, (18)

which is shown to be true for errors with unbounded support in Appendix A.
We also have

T−1
T∑

t=1

x2
jt → σ2

xj > 0, (19)

T−1
T∑

t=1

xjtuit → 0, for i, j = 1, 2. (20)

The OLS estimator of β1 is given by

β̂1 =
(
d′2M1d2

)−1 d′2M1y1,

where d2 = (I(y21−c2), I(y22−c2), . . . , I(y2T−c2))′,M1 = IT−x1(x′1x1)−1x′1,
x1 = (x11, x12, . . . , x1T )′, and y1 = (y11, y12, . . . , y1T )′. Furthermore,

T−1
(
d′2M1d2

)
= T−1

T∑

t=1

I(y2t − c2)−

[
T−1

∑T
t=1 I(y2t − c2)x1t

]2

T−1
∑T

t=1 x
2
1t

,
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and T−1 (d′2M1d2) tends to a non-zero constant, ω22 > 0. This is easily
seen in the simple case where x1t = 1 for all t. In this case T−1 (d′2M1d2)
converges to π2(1− π2) > 0. Hence

plim
T→∞

(
β̂1

)
= β1 +

plim
T→∞

(
d′2M1u1

T

)

ω22
.

where u1 = (u11, u12, . . . , u1T )′. Also under our assumptions (see in partic-
ular (19) and (20))

plim
T→∞

(
d′2M1u1

T

)
= plim

T→∞

(
d′2u1

T

)
−

plim
T→∞

(
d′2x1

T

)
plim
T→∞

(
x′1u1

T

)

σ2
x1

= E [u1tI(y2t − c2)] ,

and
plim
T→∞

(
β̂1

)
= β1 +

E [u1tI(y2t − c2)]
ω22

.

In general, E [u1tI(y2t − c2)] 6= 0, and the OLS estimator of β1 is inconsistent.
The sign and the magnitude of the inconsistency of β̂1 depends on β2 and
ρ. The OLS estimator of β1 is consistent only if β2 = ρ = 0, namely if the
contagion model is recursive (triangular) and there are no interdependencies
through the errors. To see this consider the relatively simple case where
β2 = 0, and note that under normally distributed errors we have

u1t = ρ

(
σu1

σu2

)
u2t + vt, (21)

where u2t and vt are independently distributed. Note also that vt is dis-
tributed independently of x1t and x2t and has a zero mean. In this case

E [u1tI(y2t − c2)] = E [u1tI(α2x2t + u2t − c2)]

= ρ

(
σu1

σu2

)
E [u2tI(α2x2t + u2t − c2)] + E [vtI(α2x2t + u2t − c2)] .

Since vt is distributed independently of x2t and u2t, then conditional on x2t

and u2t

E [vtI(α2x2t + u2t − c2) |u2t, x2t ] = I(α2x2t + u2t − c2)E (vt |u2t, x2t ) = 0,

and

E [u1tI(y2t − c2)] = ρ

(
σu1

σu2

)
E [u2tI(α2x2t + u2t − c2)] .

The following lemma shows that when ρ > 0, and β2 = 0, then E[u2tI(y2t −
c2)] > 0, and β̂1 will be a consistent estimator of β1 if and only if ρ = 0.
The direction of the bias is upward when ρ > 0, and downward if ρ < 0.
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Lemma 1 Suppose β2 = 0, and conditional on x2t, u2t is normally dis-
tributed, then E [u2tI(y2t − c2)] > 0 if ρ > 0.

Proof. Under β2 = 0, u2tI(y2t − c2) = u2tI(α2x2t + u2t − c2) = u∗2t, where

u∗2t =
{
u2t if u2t > c2 − α2x2t,
0 otherwise.

Conditional on x2t, noting that by assumption x2t, and u2t are independently
distributed we have,

E (u∗2t |x2t ) = Pr(u2t > c2 − αx2t |x2t )E (u2t|u2t > c2 − α2x2t, x2t) .

But

E (u2t|u2t > c2 − α2x2t, x2t) =
σu2φ

(
c2−α2x2t

σu2

)

Pr(u2t > c2 − α2x2t, x2t)
.

and, hence,

E (u∗2t |x2t ) = σu2φ

(
c2 − α2x2t

σu2

)
,

Since φ
(

c2−α2x2t
σu2

)
> 0 for all values of x2t, we also have that

E (u∗2t) = E [u2tI(y2t − c2)] > 0.

Consider now the general case where ρ > 0 and β2 > 0, and note that in
this case (using (21)) we have

E [u1tI(y2t − c2)] = ρ

(
σu1

σu2

)
E [u2tI(Y2t)] + E [ε1tI(Y2t)] , (22)

where Y2t is given by the solution (14), which takes either the value of W2t or
1+W2t. The probability of whether the solution is W2t or 1+W2t depends,
in a complicated manner, on the probability of W1t and W2t falling in the
regions A,B,C, D, and E, and the probability of a particular solution being
selected if W1t and W2t fall in region E. In Appendix B we give results from
Monte Carlo experiments, which show that the expectation is positive for a
wide range of values of β1, β2, α1, α2, and ρ. Therefore, unless β2 = ρ = 0,
the OLS estimator of β1 will be inconsistent. The large sample bias will be
upward when ρ > 0 and β1 > 0.

3.2 Consistent Estimation of the Contagion Coefficients

Consistent estimation of βi can be achieved by instrumental variable tech-
niques assuming there exist pre-determined variables specific to country i
that are correlated with I(yit − ci) and uncorrelated with the errors uit. If
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there are no country-specific regressors, namely if α1 = α2 = 0, the conta-
gion coefficients, βi, are not identified. In this case

y1t = δ′1zt + β1I(y2t − c2) + u1t,

y2t = δ′2zt + β2I(y1t − c1) + u2t,

and the observed common drivers, zt, cannot be used as instruments for
the crisis indicators. In this case pooling of the country equations will not
help either, even if the slope homogeneity assumption is imposed (namely if
δ1 = δ2, and β1 = β2).

If, however, country (market) specific regressors exist, i.e. αi 6= 0, i =
1, 2, the following instrumental variables estimator can be used. Suppose
that c1 and c2 are known and the observations yt, wt = (z′t,x′1t,x

′
2t)

′, t =
1, 2, . . . , T are given and that the following conditions are met.

(i) ∑T
t=1 wtw′

t

T

p→ Σww,

where Σww is a (non-stochastic) positive definite matrix.

(ii) Let h1t = (z′t,x′1t, I(y2t − c2))′, and h2t = (z′t,x′2t, I(y1t − c1))′, and
∑T

t=1 wth′i,t
T

p→ Qi,

where Qi i = 1, 2 are full column rank matrices and the convergence
to Qi is uniform.

Then the IV estimator of θi = (δ′i,α′i, βi)′, defined by

θ̂i =
(
Q̂′

iΣ̂
−1
wwQ̂i

)−1
Q̂′

iΣ̂
−1
wwq̂i

where

Q̂i =

∑T
t=1 wth′i,t
T

, Σ̂ww =
∑T

t=1 wtw′
t

T
, q̂i =

∑T
t=1 wtyit

T
,

is consistent for θi as T →∞.1

The validity of these conditions needs to be checked in the case of the
particular model under consideration. For example, suppose the model of
interest is given by (16) and (17), and that the conditions (18) to (20) hold,
and T−1

∑T
t=1 x2tx1t tends to a finite limit as T →∞. Let

plim
T→∞

(
T−1

∑T
t=1 x

2
1t T−1

∑T
t=1 x1tI(y2t − c2)

T−1
∑T

t=1 x2tx1t T−1
∑T

t=1 x2tI(y2t − c2)

)
= V1.

1The parameters of the model, including the threshold coefficients, c1 and c2, can also
be estimated by the maximum likelihood method. This is, however, beyond the scope of
the present paper.
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Then α1 and β1 can be identified if V1 has a full rank. This rank condition
can be investigated using the solutions (13) and (14). Although, the exact
form of V1 depends on the way the indeterminacy of the solution is resolved
in periods where −1 < Wit = (αixit + uit − ci)/βi ≤ 0, for i = 1, 2, it
would nevertheless be possible to check if V1 is full rank without a full
specification of the dt process. For example, it suffices to postulate that
dt follows a general Bernoulli process with a probability that varies with
the state variables, xit, i = 1, 2. In the case where xit and uit are strictly
stationary, in view of (13) and (14), it follows that yit, i = 1, 2 are also
strictly stationary, and

T−1
T∑

t=1

x1tI(y2t − c2)
p→ E [x1tI(y2t − c2)] ,

T−1
T∑

t=1

x2tI(y2t − c2)
p→ E [x2tI(y2t − c2)] .

These results, in conjunction with the solution (13) and (14) allow us to
establish the rank of V1 without an exact knowledge of the dt process.

4 Contagion in a Multi-Country Setting

Consider now a sample of N countries observed over periods t = 1, 2, . . . , T ,
some or all of which could be subject to a crisis at least for some periods
over the sample period. A generalisation of (1) and (2) to the case of N > 2
can be written as

yit = δ′izt + α′ixit + βi

N∑

j=1

wijI(yjt − cjσj,t−1) + uit, i = 1, 2, . . . , N,

where the weights wij ≥ 0 are such that
∑N

j=1wij = 1, and wii = 0, for all i.
The theoretical literature on contagion can often be cast in terms of this gen-
eral formulation. For example, Allen and Gale (2000) consider a theoretical
model of financial contagion where bank failures spread from one region to
another under different market structures. They study N = 4 countries and
consider three types of market structures, namely “complete”, “incomplete”,
and “disconnected incomplete”. In terms of our set up these correspond to
different weighting schemes as defined by the following patterns

WComplete = (wij)=




0 1/3 1/3 1/3
1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0


 ,
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WIncomplete = (wij)=




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

and

WDisconnected = (wij)=




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

Notice also that the incomplete structures pre-suppose the existence of cer-
tain ordering of the regions, although no particular ordering of the regions
is required under the complete market structure. Under the disconnected
incomplete structure the N = 4 problem reduces to two separate N = 2
problems and their solutions do not pose any new difficulties. The incom-
plete market pattern can be reduced to the following generalisation of (7)
and (8)

Y1t = W1t + I(Y2t),
Y2t = W2t + I(Y3t),
Y3t = W3t + I(Y4t),
Y4t = W4t + I(Y1t),

where as before

Yit =
yit − ciσi,t−1

βi
, Wit =

δ′izt + α′ixit + uit − ciσi,t−1

βi
, i = 1, 2, 3, 4. (23)

The solution in this case can be obtained along similar lines followed for the
simple case of N = 2, although at the expense of much greater details. As
before there will also be multiple solutions. For example, in the case where
Wit = 0, two solutions are possible, namely Y a

it = 0 and Y b
it = 1.

Some interesting results can be obtained under the complete market
structure. In this case (for a general N) we have

yit = α′xit + β

(∑N
j=1,j 6=i I(yjt − cj)

N − 1

)
+ γft + εit, i = 1, 2 . . . , N, (24)

where for simplicity we have omitted the common observed effects (zt),
assumed all the coefficients are homogeneous and have characterised the
interdependence of the errors using the single factor structure given by (25).
Define the crisis indicator κit = I(yit − ci). Then,

∑N
j=1,j 6=i I(yjt − cj)

N − 1
=

(
N

N − 1

)
κ̄t − 1

N − 1
κit,
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where κ̄t = N−1
∑N

i=1 κit. Averaging (24) over t = 1, 2, . . . , T , we have2

ȳt = α′x̄t−1 + βκ̄t + γft + ε̄t.

Using this result in (24) to eliminate the unobserved common effect, ft, we
have

yit = α′xit + β

[(
N

N − 1

)
κ̄t − 1

N − 1
κit

]
+

(
ȳt −α′x̄t − βκ̄t − ε̄t

)
+ εit,

i = 1, 2 . . . , N.

Hence

yit − ȳt = α′ (xit − x̄t)− β

(
κit − κ̄t

N − 1

)
+ (εit − ε̄t).

In the case where N is sufficiently large, the second term converges to zero
and β cannot be identified, although a consistent estimator of α can be
obtained from an OLS regression of yit − ȳt on (xit − x̄t). Allowing for
parameter heterogeneity does not resolve this problem. For N fixed as T →
∞, the condition for identification of β is similar to the two-country case
discussed in Section 3 above.

5 A Re-examination of Existing Tests of Conta-
gion

Using the insights gained from the canonical model we now reconsider the
extant, empirical literature on contagion. We concentrate on the two most
commonly used approaches: Correlation based tests of contagion and tests
based on panel data analysis of currency crises.

5.1 Correlation Based Tests of Contagion

In a number of papers by Boyer, Gibson, and Loretan (1999), Loretan and
English (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbra-
cia (2005) attempts have been made to identify contagion effects from pair-
wise correlation of stock market returns by testing whether correlation is
significantly higher during crises times compared to normal periods. The
main difference between these studies is in how the correlation coefficient
is adjusted for the higher volatility experienced in crises periods. All these
studies require a priori specification of the crises periods. The data em-
ployed are typically daily return observations and do not consider global or
country-specific variables in their analysis.

2See Pesaran (2005) for a general discussion of the analysis of cross-sectional depen-
dence in large panels.
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In terms of our set up the basic model underlying this approach can be
written as (following the approach of Corsetti et al.)

y1t = α1 + β1I(y2t − c2t) + u1t,

y2t = α2 + β2I(y1t − c1t) + u2t,

where guess-estimates of cit are obtained from conditional sample means
and standard deviations of yit in an informal manner. The interdependence
across the two countries is characterised using the single factor specification

uit = γi ft + εit, (25)

where ft is the unobserved common factor, and εit, i = 1, 2 are idiosyncratic
shocks:

ft ∼ iid(0, 1),

εit ∼ iid(0, σ2
i ).

ft and εit are also assumed to be independently distributed. For the two-
country set up the single factor model is algebraically equivalent to assuming
u1t and u2t are correlated with the correlation coefficient

ρ =
γ1γ2√

σ2
1 + γ2

1

√
σ2

2 + γ2
2

.

Under this set up there exist no valid instruments with which to identify
the contagion coefficient from the interdependence coefficient ρ. The iden-
tification problem is overcome in this literature by assuming that the crisis
periods are known a priori, and are sufficiently prolonged and continuous
so that correlation of y1t and y2t during crisis and non-crisis periods can be
consistently estimated and compared.

Therefore, this approach is problematic on three counts.

1. The endogeneity problem discussed in the previous section is circum-
vented by separating crises periods from non-crises periods. Since crisis
periods are identified ex post, after passing through the observations,
the endogeneity bias is re-introduced, however, in form of a sample
selection bias.3

2. Multi-country, multi-asset (market) generalisations of the correlation/co-
variance approach will require existence of much longer periods of con-
tinuous crisis for the estimation and testing strategy to be meaningful.
Such data sets are unlikely to exist since by their very nature crisis
periods are relatively short.

3The problem of sample selection bias also applies to other approaches, such as that of
Glick and Rose (1999) and Caramazza, Ricci and Salgado (2004), who select only crises
periods to study contagion.
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3. The correlation analysis cannot be used in forecasting and is of limited
scope in a structural understanding of the crises and the factors behind
their occurrence.

5.2 Panel Estimates of Contagion Effects

Eichengreen, Rose and Wyplosz (1996), Esquivel and Larrain (1998), Kruger,
Osakwe and Page (1998), Kumar, Moorthy and Perraudin (2002) and Stone
and Weeks (2001) attempt to estimate and test for contagion effects using
panel data models. The econometric approach taken in these papers is based
on binary choice models with linear index functions

yit = α0i + α′xit + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (26)

where yit is a latent variable observed qualitatively through a univariate
binary response indicator, κit = I(yit), the currency crisis indicator, xit is a
k× 1 vector of observed macroeconomic and political variables, α is a k× 1
vector of unknown coefficients and εit is an idiosyncratic error assumed to
be serially uncorrelated for each i, and iid normally distributed across i with
mean zero, a unit variance. Except for Esquivel and Larrain (1998), who
use a random effects probit model, the literature assumes that α0i = α0.

Contagion is addressed by including a dummy variable, Cit, in model (26),

yit = α0i + βCit + α′xit + εit, (27)

where

Cit = I




N∑

j=1,j 6=i

κjt


 . (28)

Under this formulation the crisis indicator, Cit, takes the value of unity if any
one of the N − 1 remaining countries find themselves in a crisis state. This
formulation is quite similar to that discussed above and is subject to similar
identification and estimation problems.4 Due to the non-linear nature of
this formulation, in order to assess the impact of the endogeneity on the
parameter estimates in the probit model of (26) we conduct a Monte Carlo
experiment using the data of Eichengreen et al. (1996). Details of the data
are given in the Appendix C.

5.2.1 Experimental Design

Simulation with artificial regressors The Monte Carlo experiments
are based on the following data generating process (DGP),

yr
it = α0 + α′xr

it + ur
it, i = 1, 2, . . . , N, t = 1, 2, . . . , T, r = 1, 2, . . . , R,

4The problem of simultaneity also affects other approaches. Kaminsky and Rein-
hart (2000) add a contagion index similar to that of ERW to the macroeconomic variables
on the right hand side to explain the probability of currency crises.
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where r refers to the replication number in the Monte Carlo experiments,
R is the total number of replications, xr

it is a k × 1 vector of simulated
exogenous variables. Under this DGP, β, the contagion coefficient in (27),
is set equal to zero and all other coefficients are identical across i.

The estimation of α0 and α under a probit specification only makes use
of κr

it = I(yr
it) and, hence, without loss of generality the variance of the error

term, ur
it, may be set equal to unity. To allow for correlation across the

errors of different cross section units we adopt the following standardised
one-factor structure

ur
it =

γif
r
t + εrit√
1 + γ2

i

where γi is a scalar, f r
t ∼ iidN(0, 1), and εrit ∼ iidN(0, 1). Under these

assumptions we have E(ur
it) = 0 and Var(ur

it) = 1. The pairwise correlation
coefficient of the errors is given by

Corr
(
ur

it, u
r
jt

)
=

γiγj√(
1 + γ2

i

)
(1 + γ2

j )
.

Treating values of yr
it > 0 as crises, in all our experiments we fix α0 such

that the fraction of observations, ψ, with yr
it > 0 is non-zero but relatively

small, namely ψ = 0.05. For this purpose, assuming that the regressors are
normally distributed we have α′xit +uit ∼ iidN(0, 1+α′Σxα) and therefore

Pr (yr
it > 0) = Pr

(
α′xr

it + ur
it > −α0

)
= 1− Φ

( −α0√
1 + α′Σxα

)
= ψ.

Hence, we set
α0 = − (

1 + α′Σxα
)1/2 Φ−1(1− ψ). (29)

This is an important choice in the Monte Carlo experiment because the
contagion dummy becomes a vector of ones if the proportion of crises periods
is too high or a vector of zeros if the proportion of crises periods is too low.
In such a case the right hand side variables are perfectly collinear as they
contain an intercept and the contagion dummy.

For each replication a contagion dummy, Cr
it, is constructed as

Cr
it = I




N∑

j=1,j 6=i

κr
jt


 .

For the probit estimation only the binary indicator κr
it = I(yr

it) is observed.
The probability of κr

it = 1 is modelled as

Pr(κr
it = 1) = Φ(α0 + βCr

it + α′xr
it),
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and for the linear OLS regression the assumed model is

yr
it = α0 + βCr

it + α′xr
it + erit,

where erit ∼ iid(0, σ2
e). The parameters of the probit model (in particular the

contagion coefficient, β) are computed by the maximum likelihood method.
In a first set of Monte Carlo experiments, we generate xr

it ∼ iid(0,Σx) for
k = 2.5 We fix Σx by generating the regressors with the following common
factor structure

xr
it =

1√
1 + φi

(qr
it + φih

r
t ), (30)

where qr
it ∼ iidN (0, 1), and hr

t ∼ iidN (0, 1). To ensure that the regressors
are distributed independently of the errors, hr

t and f r
t are taken to be inde-

pendent draws. Finally, without loss of generality we set α = ιk, a k × 1
vector of ones. Note that under φi = 0, Σx = Ik, and using (29) we have
α0 = 1.96 (

√
1 + k) for ψ = 0.025. In the case where φi > 0, Σx will have

typical off diagonal elements σij = φiφj/(
√

1 + φi

√
1 + φj), and α0 follows

from (29).
Note that, while we appreciate that parameter heterogeneity may be

important in applications to real data, we abstract from it in the Monte
Carlo experiment for simplicity. Intercept heterogeneity could be introduced
via a random effects probit model or a conditional logit model, see Hsiao
(2003).

Simulation with ERW regressors In a second set of Monte Carlo ex-
periments the exogenous regressors of Eichengreen et al. (1996) are used and
taken as given across all the replications. Under the null of no contagion β
is set equal to zero and the other parameters, (α0,α), are set equal to the
estimates of the pooled probit model computed using the ERW data. These
estimates, denoted α̂0 and α̂ are given in Table 2.

Hence, a vector yr is generated as

yr
it = α̂0 + α̂′xit + ur

it

The specification of the error term and the estimation are as in the case of
artificial data.

5.2.2 Results of the Monte Carlo Experiments

Results for the artificial regressors Tables 3–6 give the results for the
Monte Carlo experiments with artificially generated regressors. Tables 3–4
show the results for orthogonal regressors and Tables 5–6 show the results

5We have also performed Monte Carlo experiments with k = 1, and the results for the
contagion parameter are unchanged. In order to keep the presentation concise we only
report the experiments with k = 2.
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Table 2: Probit model with ERW data
variable (α̂0, α̂) |t|-value
Intercept (α̂0) −1.886 10.751
Capital controls −0.134 0.717
Government victory −0.060 1.141
Government loss −0.332 0.787
Credit growth 0.016 1.880
Inflation 0.065 3.584
Output growth 0.020 0.732
Employment growth 0.043 1.007
Unemployment rate 0.073 3.010
Budget position 0.042 2.042
Current account −0.024 1.072
Total number of observations = 645

for regressors that are correlated with φi = 0.5, ∀i, see (30). The first of
each set of tables, Tables 3 and 5, reports the results for the discretised
dependent variable, i. e. the estimates from the probit model. The second of
each set of tables, Tables 4 and 6, are for the continuous dependent variable
estimated via OLS.

For all experiments the bias increases with the size of the error correlation
across i. For small and even medium sample sizes the estimate of β is quite
imprecise in the probit model. However, the OLS estimates of the contagion
effects, β, under error interdependence (ρ = γ2/(1 + γ2) 6= 0) is positive in
all the experiments. This confirms the upward bias derived theoretically in
the context of our simple two-country canonical model.

The last panel of each table gives the rejection probability for the hy-
pothesis of no contagion, that is the proportion of experiments where the
null hypothesis H0 : β = 0 is rejected. It can be seen that the rejection prob-
ability rises as interdependence increases. With γ = 1, which is equivalent
to an error correlation of 0.5, N = T = 100 the hypothesis of no contagion is
virtually always rejected in all models. However, even mild interdependence
leads to high rejection rates. In the OLS estimation with φ = 0, γ = 0.4,
which implies correlation of 0.14, and N = T = 50 the hypothesis of no
contagion is rejected in 96.3% of cases.

The results show that the precision of the estimates does not improve
equally when increasing N or T . In all the experiments the root mean square
errors are systematically lower with T larger than N for a given number of
observations NT . For example in Table 3, for γ = 1, for T = 50, N = 100,
the RMSE is 1.038 and for T = 100, N = 50 it is 0.880. To understand this
recall that the contagion variable is 1 for all i if there are at least two crises
in the period. Hence, in such a situation the variation of the contagion index
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remains unchanged if other countries are added, and the effect of increasing
N will be limited.

Results based on the ERW regressors Table 7 shows that both, the
OLS and the probit results, produce a marked upward bias in the estimates
of the contagion coefficient for non-zero values of γ and that the bias in-
creases in γ. The bias could be substantial even for moderate degrees of
cross dependence. For example, for γ = 0.4 (which corresponds to a pair-
wise cross correlation coefficient of around 0.14) the pooled panel estimate
of β is 0.27 as compared to its true value of zero. This result holds under
both of the alternative estimation procedures.

The null hypothesis of β = 0 is also rejected well in excess of the nominal
5% level for all non-zero values of γ. The pooled probit estimates also
exhibit a substantial degree of over-rejection (12.3% as compared to 5%)
even under γ = 0. The degree of over-rejection of the pooled OLS estimates
(7.2%) is much less pronounced, although still significantly different from
5% considering that the experiments are based on 2000 replications.

In view of these results it is reasonable to conclude that the estimate
of the contagion coefficient of 0.54 that one obtains from pooled probit
estimation using the ERW data could be wholly or partly due to neglected
inter-dependencies of the equation errors across different countries.

6 Application to European Interest Rates Spreads

In this section we provide an empirical application of the model presented in
this paper using data on European interest rates spreads analyzed by Favero
and Giavazzi (2002).6 The data are three month interest rates spreads for
seven European countries (the Netherlands, France, Italy, Spain, Denmark,
Sweden, and Belgium) with weekly observations taken on Wednesdays over
the period 2 November 1988 to 9 September 1992. The canonical model
presented in this paper provides a formal statistical framework for a si-
multaneous analysis of contagion and interdependence without an a priori
classification of the observations into crisis and non-crisis periods.

Favero and Giavazzi (2002) consider positive as well as negative extreme
movements in the spreads, and pre-identify these extreme observations based
on residuals from a first stage VAR (Vector Autoregressive) analysis in the
seven spreads. In our application we introduce the upside and the downside
crises dummies in our canonical model and consider the equations

∆yit = α0i + αi1∆yi,t−1 + αi2∆yi,t−2 + β+
i C+

it + β−i C−it + εit, (31)

where ∆yit is the first difference in the spreads used by Favero and Giavazzi
6We thank Carlo Favero for providing us with the data.
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(2002). The contagion indices are defined as

C+
it = I




N∑

j=1,J 6=i

I(∆yjt − cj)


 ,

and

C−it = I




N∑

j=1,J 6=i

I(−∆yjt − cj)


 ,

where cj > 0 is set to two standard deviations of ∆yit, which implies that
2.9% of observations are positive crises observations and 2.1% negative crises
observations. We have also tried other threshold levels and the results did
not vary substantially.7

Equation (31) is estimated country by country using the Generalized In-
strumental Variables Estimation (GIVE) procedure with the lagged depen-
dent variables of the countries j = 1, 2, . . . , N , j 6= i, used as instruments for
C+

it and C−it . Given that the endogenous variables C+
it and C−it are nonlinear

functions of the dependent variables, the strength of the instruments can be
improved by also considering power series of the instruments (Kelejian 1971,
Newey 1990). We construct powers of the lagged endogenous variables

wjt(m) = [∆yj,t−1, (∆yj,t−1)2, . . . , (∆yj,t−1)m,∆yj,t−2, (∆yj,t−2)2, . . . , (∆yj,t−2)m],

and use

Wit(m) = [w1t(m),w2t(m), . . . ,wi−1,t(m),wi+1,t(m), . . . ,wNt(m)],

as instruments for C+
it and C−it . In the applications we considered powers

m = 1, 2, . . . , 6, which also gives an insight into the robustness of the results
to the choice of m. We also investigate the weak instrument problem by
reporting the Cragg-Donald statistic (Cragg and Donald 1993, Stock and
Yogo 2005) for the GIVE estimates.

The results are summarized in Table 8. The top panel provides the OLS
estimates (that do not take the endogeneity of the contagion indices into
account). For three countries, France, Spain, and Belgium, β+

i is significant
at least at 5% level, and β−i is significant for all countries except Italy. The
results in the subsequent panels of Table 8 provide the instrumental variable
estimates using Wit(m) as the instruments. Setting m = 1, β+

i continues to
be statistically significant in the case of France, Spain, and Belgium, whereas
β−i becomes statistically insignificant for all the seven spreads. Using m = 2
and 3 leads to the same results. When m = 4 the contagion coefficient, β+

i

7Another possible option would have been to include the ∆yjt, j = 1, 2, . . . N, j 6= i in
the right hand side of the regression. However, this model lead to a loss in power in the
estimation and all coefficients were inconsistent.

25



in the equation for Italy becomes also significant, and when m = 5, β+
i in

the equation for Spain becomes insignificant, and the same results applies
to m = 6.

Overall, the test results provide some evidence of contagion. But the
effects are asymmetric, with no significant effects from sharp declines in
the spreads, contrary to the OLS estimates. The statistical significance
of the results should also be viewed with some caution, since the Cragg-
Donald statistics reported in Table 8 show that the null of weak instruments
cannot be rejected (Stock and Yogo 2005). Nevertheless, the statistical
insignificance of β−i irrespective of the order of the power augmentation of
the instruments (m), suggests that the significance of the OLS estimates of
β−i , is most likely due to interdependence rather than contagion.

7 Conclusions

In this paper we have developed a canonical model of contagion. Using
this model, we have considered the issue of identification and consistent es-
timation of contagion coefficients. We show that in the presence of error
inter-dependencies contagion effects cannot be consistently estimated with-
out country-specific regressors. This clearly highlights some of the pitfalls
that surround the empirical studies of currency crises and financial contagion
that are extant in the literature. Correlation analyses look for significant
shifts in correlation coefficients across crises and tranquil periods without
the use of country specific variables. In the case of such data sets iden-
tification of contagion is achieved by making strong a priori assumptions
concerning sample splits into “crisis” and “no-crisis” periods. Invariably,
this also involves the identification of the source country in which the crisis
is purported to have begun.

Multi-country panel analyses of the type carried out by ERW do contain
country specific fundamentals and could in principle be used to shed light on
the issue of contagion versus interdependence. However, panel data studies
are typically carried out assuming that contagion indices are predetermined
and that equation errors across countries/markets are independently dis-
tributed, and as we have shown this could introduce a substantial upward
bias in the estimates of the contagion coefficients.

The canonical model presented in this paper provides a formal statisti-
cal framework for a simultaneous analysis of contagion and interdependence
without an a priori classification of the observations into crisis and non-
crisis periods. This is illustrated using the data on European interest rates
spreads analyzed by Favero and Giavazzi (2002). We find that contagion
indices corresponding to sharp falls in the spreads (measured relative to the
German interest rate) that are significant when using OLS become insignif-
icant when accounting for their endogeneity using instrumental variables.
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However, the statistical significance of sharp rises in the spreads for some
of the European countries (France, Spain and Belgium) continue to remain
statistically significant even after instrumentation. Not withstanding the
possible weak instrument problem, these results provide some evidence of
contagion in the transmission of interest rate shocks across the European
bond markets during 1988-1992 (ERM period), but only when the interest
rates rise relative to the German interest rate and not the reverse.
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Appendix A: Further Mathematical Results

Lemma 2 Suppose xit and uit, for i = 1, 2, are serially uncorrelated ran-
dom variables and the joint probability density of (u1t, u2t) has positive sup-
port over R2, then

1
T

T∑

t=1

I(yit − ci)
p→ πi, as T →∞,

and 0 < πi < 1.

Proof. The I(yit − ci) are binary, iid random variables with Pr(I(yit − ci)) =
1 resulting from (13), and the sample mean will converge to the expectation,
which we now show to lie between 0 and 1. We have that

E(I(yit − ci)) = Pr(Yit > 0)
= Pr(Wit + 1 > 0|Wjt > 0) Pr(Wjt > 0)

+Pr(Wit + 1 > 0|Wit > 0,−1 < Wjt ≤ 0)
×Pr(Wit > 0,−1 < Wjt ≤ 0)
+Pr(Wit > 0|Wjt ≤ −1)Pr(Wjt ≤ −1)
+Pr(Wit > 0|Wit ≤ −1,−1 < Wjt ≤ 0)
×Pr(Wit ≤ −1,−1 < Wjt ≤ 0)
+Pr(Y ∗(d) > 0| − 1 < Wit ≤ 0,−1 < Wjt ≤ 0)
×Pr(−1 < Wit ≤ 0,−1 < Wjt ≤ 0)

= Pr(Wit + 1 > 0|Wjt > 0) Pr(Wjt > 0)
+Pr(Wit > 0)Pr(Wjt ≤ 0|Wit > 0)
+(1− πd)Pr(−1 < Wit ≤ 0,−1 < Wjt ≤ 0)

≡ πi.

If the joint distribution of u1t and u2t and, therefore, also that of W1t and
W2t has positive support over R2, then at least Pr(Wit + 1 > 0|Wjt > 0) 6= 0
and Pr(Wjt > 0) 6= 0. Hence, πi > 0.

In order to see that πi < 1 consider

Pr(Yit > 0) = 1− Pr(Yit ≤ 0)
= 1− Pr(Wit + 1 ≤ 0|Wjt > 0)Pr(Wjt > 0)

+Pr(Wit ≤ 0|Wjt ≤ −1)Pr(Wjt ≤ −1)
+Pr(−1 < Wjt ≤ 0)Pr(Wit ≤ −1)
+πdPr(−1 < Wit ≤ 0,−1 < Wjt ≤ 0) .

Again, if the joint distribution of u1t and u2t and, therefore, also that of W1t

andW2t has positive support over R2, then at least Pr(Wit + 1 ≤ 0|Wjt > 0) 6=
0 and Pr(Wjt > 0) 6= 0, which is sufficient to ensure that πi < 1
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Note that the assumption that xit and uit are serially uncorrelated is
made for expositional convenience and strictly speaking not necessary.

Appendix B: Simulation of E(u2tI(y1t − c1))

Table A reports the simulated values of E [u2tI(y1t − c1)] using the sample
equivalent

∑T
t=1 [u2tI(y1t − c1)] /T with T = 2, 000, 000. The data are gen-

erated from the reduced form of the model given by Equations (13) and (14)
with k = 1, xit, uit ∼ iid N(0, 1), Pr (dt = 1) = 0.50, and ci = 1.64. It can be
seen that only for ρ = β = 0 the simulated value is zero. Similar results are
also obtained for other choices of the solution indicator, dt, namely dt = 0,
or dt = 1.

Appendix C: Details of the ERW Data Set

The data set used by Eichengreen et al. (1996) is available on the internet at
http://haas.berkeley.edu/∼arose/RecRes.htm along with a Stata log
file.

“The data set is quarterly, spanning 1959 through 1993 for twenty in-
dustrial countries.” (Eichengreen et al. 1996, p. 477) The countries are the
USA, UK, Austria, Belgium, Denmark, France, Italy, Netherlands, Norway,
Sweden, Switzerland, Canada, Japan, Finland, Greece, Ireland, Portugal,
Spain, Australia and Germany as the centre country. “Most of the variables
are transformed into differential percentage changes by taking differences
between domestic and German annualised fourth-differences of natural log-
arithms and multiplying by a hundred.” (Eichengreen et al. 1996, p. 477).

The variables are: Total non-gold international reserves (IMF IFS line
1ld), exchange rate with US dollar (rf), money market rates (60b) or where
unavailable discount rates (60), exports and imports (70 and 71), the cur-
rent account (80) and the central governments budget position (80) both
as percentages of nominal GDP (99a), long term bond yields (61), nominal
stock market index (62), domestic credit (32), M1 (34), M2 (35 + M1),
CPI (64), real GDP (99a.r), and relative unit labour cost (reu). Further
from the OECD’s Main Economic Indicators employment and unemploy-
ment, and Eichengreen et al. construct “indicators of government electoral
victories and defeats, using Keesing’s Record of World Events and Banks’
Political Handbook of the World.” (Eichengreen et al. 1996, p. 477)

Eichengreen et al. use the following definition of the exchange-rate mar-
ket pressure index

EMP it = λ1%∆eit + λ2%∆(rit − rGt)− λ3(%∆fit −%∆fGt), (32)

where eit is the exchange rate to the US Dollar, rit the interest rate, and fit

the international reserves of country i. Subscript G indicates variables for
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Table A: Simulated Values of
∑T

t=1[u2tI(y1t − c1)]/T
ρ β α

−4 −1 0 1 4
−0.99 −4 −0.095 −0.143 −0.103 −0.142 −0.096

−1 −0.092 −0.143 −0.103 −0.142 −0.092
0 −0.089 −0.142 −0.103 −0.143 −0.088
1 −0.082 −0.140 −0.103 −0.140 −0.083
4 −0.054 −0.037 −0.024 −0.039 −0.053

−0.50 −4 −0.056 −0.077 −0.052 −0.077 −0.056
−1 −0.050 −0.075 −0.052 −0.075 −0.050

0 −0.045 −0.072 −0.052 −0.072 −0.044
1 −0.036 −0.051 −0.040 −0.051 −0.037
4 −0.011 0.030 0.023 0.031 −0.011

0.00 −4 −0.018 −0.017 −0.005 −0.017 −0.017
−1 −0.007 −0.010 −0.004 −0.010 −0.008

0 0.000 0.000 −0.000 0.000 −0.000
1 0.008 0.040 0.045 0.041 0.008
4 0.032 0.089 0.060 0.090 0.032

0.50 −4 0.022 0.035 0.026 0.035 0.021
−1 0.036 0.053 0.036 0.052 0.036

0 0.045 0.072 0.052 0.072 0.045
1 0.055 0.128 0.135 0.128 0.055
4 0.075 0.134 0.082 0.134 0.074

0.99 −4 0.060 0.078 0.010 0.078 0.060
−1 0.078 0.112 0.047 0.112 0.079

0 0.089 0.142 0.103 0.142 0.089
1 0.099 0.208 0.213 0.207 0.099
4 0.114 0.165 0.070 0.166 0.115

The results are from data generated according to equations (13)
and (14), with k = 1, xit, uit ∼ iidN(0, 1), Pr(dt = 1) = 0.5, ci = 1.64,
and T = 2, 000, 000.

Germany, which is taken as the center country. Eichengreen et al. (1996,
pp.476) say that they “weight the components so as to equalize the volatility
of the three components”. This is accomplished by setting λi = 1/σi, where
σi is the standard deviation of component i. For this data set σ1 = 0.243,
σ2 = 0.037, and σ3 = 0.0047.

The crisis index is the calculated as

yit =
{

1 EMP it > µEMP + 1.5σEMP

0 otherwise

where µEMP is the mean and σEMP is the standard deviation of the exchange
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rate market pressure index.
The credit growth, the inflation rate, the output growth and the current

account are calculated as

dxit = 100 ∗ ln(xit/xit−4)− ln(xGt/xGt−4), (33)

where xit is the variable for country i and Germany, G. The relative unem-
ployment rate is dxit = xit − xGt. The relative budget position is defined
as dbit = bit/yit − bGt/yGt, where bit is the nominal government budget of
country i, yit is the GDP of country i and Germany, G. The dummies for
capital controls, government electoral victory and government electoral loss
are not transformed. The other variables mentioned above are not used.

“To avoid counting the same crisis more than once, we exclude the
later observation(s) when two (or more) crises occur in successive quar-
ters.” (Eichengreen et al. 1996, p.476) Country by country excluding time
periods with missing data results in 645 observations for 17 countries with
56 crises observations. The countries are the USA, the UK, Austria, Bel-
gium, Denmark, France, Germany, Italy, the Netherlands, Norway, Canada,
Japan, Finland, Greece, Ireland, Portugal, Spain, and Australia.
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Table 7: Bias, RMSE, Power of the Contagion Coefficient (ERW Data)

Probit OLS
γ Bias RMSE [t > c] Bias RMSE [t > c]
0 −0.012 0.245 0.123 −0.005 0.095 0.072
0.2 0.069 0.247 0.212 0.079 0.127 0.289
0.4 0.282 0.375 0.535 0.276 0.300 0.887
0.6 0.528 0.588 0.858 0.492 0.510 0.996
0.8 0.774 0.822 0.977 0.696 0.711 1.000
1 0.998 1.042 0.996 0.863 0.875 1.000
Data are generated from yr

it = α̂0 + α̂′xit + εr
it, where xit are

the data of ERW, and α̂0 and α̂ the respective probit estimates
of the parameters. εr

it = γr
i fr

t + ur
it, where γr

i ∼ U
ą

1
2
γ, 3

2
γ

ć
,

fr
t , ur

it ∼ iid N(0, 1). The probit estimations use a discretised depen-
dent variable, κr

it = I(yr
it), and the OLS estimations the continuous

dependent variable, yr
it. For the estimations, a spurious contagion

dummy was added and the common factor was ignored. The results
in the table are for the contagion coefficient, β̂. Reported are the bias,
the root mean square error, and the one-sided rejection probability
denoted [t > c], which are defined in the footnote of Table 3.

v



Table 8: OLS and GIVE Estimates of the Contagion Coefficients in the
Interest Rates Spreads Equations

NL FR IT ES DK SW BG
OLS

β+ 0.046 0.098 0.128 0.165 0.025 0.056 0.104
t 1.862 3.242 1.604 4.090 0.437 0.705 3.729
β− −0.064 −0.090 −0.097 −0.088 −0.178 −0.185 −0.080
t 2.541 2.792 1.126 1.934 2.908 2.229 2.683

GIVE, m = 1
β+ −0.160 0.230 0.109 0.310 −0.471 −0.036 0.291
t 1.274 1.678 0.277 1.501 1.735 0.107 1.923
β− −0.142 −0.017 0.294 −0.114 0.178 0.409 0.038
t 0.922 0.130 0.973 0.798 0.594 1.189 0.325
g 0.463 0.798 0.639 0.547 0.987 1.150 0.658

GIVE, m = 2
β+ −0.059 0.171 0.032 0.051 −0.329 −0.335 0.191
t 0.851 2.174 0.142 0.475 1.640 1.533 2.134
β− 0.022 −0.070 0.008 0.016 0.146 0.370 0.016
t 0.366 0.878 0.038 0.175 0.851 1.532 0.256
g 1.136 1.044 1.016 1.081 0.862 1.117 0.828

GIVE, m = 3
β+ −0.024 0.126 0.052 0.123 −0.332 −0.079 0.180
t 0.443 1.997 0.303 1.438 2.398 0.471 2.903
β− 0.002 −0.092 −0.005 −0.018 0.041 0.259 −0.024
t 0.030 1.394 0.025 0.222 0.294 1.276 0.457
g 1.166 0.987 1.005 1.117 1.134 0.901 1.130

GIVE, m = 4
β+ −0.010 0.122 0.083 0.166 −0.240 −0.007 0.163
t 0.224 2.356 0.542 2.224 2.079 0.054 3.118
β− −0.007 −0.062 −0.043 −0.057 −0.113 −0.024 −0.053
t 0.158 1.126 0.272 0.838 0.992 0.143 1.081
g 1.278 1.251 1.086 1.153 1.098 1.007 1.189

GIVE, m = 5
β+ 0.009 0.099 0.183 0.145 −0.148 0.118 0.171
t 0.225 2.117 1.361 2.113 1.474 0.908 3.701
β− −0.022 −0.054 −0.066 −0.061 −0.115 −0.080 −0.046
t 0.506 1.022 0.445 0.915 1.088 0.518 0.988
g 1.213 1.258 1.116 1.114 1.098 0.869 1.224

GIVE, m = 6
β+ 0.017 0.079 0.161 0.148 −0.129 0.155 0.170
t 0.472 1.805 1.275 2.330 1.386 1.268 4.045
β− −0.039 −0.028 −0.033 −0.014 −0.136 −0.145 −0.037
t 0.966 0.568 0.241 0.232 1.391 1.018 0.834
g 1.094 1.196 1.087 1.115 1.027 0.853 1.292
The source of the intererst rates spreads is Favero and Giavazzi (2002). The coun-
tries are The Netherlands (NL), France (FR), Italy (IT), Spain (SP), Denmark
(DK), Sweden (SW), and Belgium (BG). t denotes the absolute t-value, g the
Cragg-Donald statistic, and m the maximum power for the polynomial approxi-
mation of the instruments. vi


