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Abstract

A variety of forecasting methods are available for exploiting the
time-series and cross-sectional dimensions (T' and N) of panel data,
including fixed and random effects estimation, Bayesian methods, pool-
ing, and forecast combination. We discuss how the predictive accuracy
of these methods depends on T and N as well as the importance of the
type and magnitude of heterogeneity in the model parameters that reg-
ulate the bias-variance trade-off in the forecasting problem. Finally, we
discuss choices of loss function and methods for assessing the accuracy
of panel data forecasts.
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1 Introduction

Economic forecasting experiments often take off from the univariate ARIMA
models developed and popularized in the influential work of Box and Jenkins
(1970). This practice has brought clear advantages from a computational
perspective since least squares estimation of the parameters of autoregressive
models is simple and efficient algorithms exist for this purpose.! Moreover,
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the econometric properties of such estimators are well understood in a va-
riety of settings with data displaying even strong forms of serial persistence
(autocorrelation) and time-varying volatility (heteroskedasticity), including
unit root dynamics and autoregressive conditional heteroskedasticity. Sea-
sonal patterns and trends can also be tailored to the individual time series.
Yet, this flexibility can come at the cost of imprecisely estimated param-
eters in settings where the data have a short time-series dimension (small
T') and estimation error can lead to poor out-of-sample forecast accuracy.
Additionally, the classical univariate modeling approach does not attempt
to exploit any linkages or constraints on the model parameters that may
hold across multiple time series.

Following the influential work of Sims (1980), univariate forecasting mod-
els have been broadened to multi-variate time-series models such as vector
autorregressions (VARs). Due to their flexible modeling of dynamic inter-
action effects, these models typically require estimating vastly more param-
eters than univariate models. This can again lead to deterioration in pre-
dictive accuracy in cases where the time-series dimension is short. Bayesian
estimation methods have been developed to deal with this issue. These
methods generally reduce the impact of estimation error through “Min-
nesota” priors which shrink posterior parameter estimates towards some
ex-ante motivated values (Litterman, 1980). Still, these methods tend to be
applied mostly to instances in which the time-series dimension of the data
(T) is relatively large and the cross-sectional dimension (N) is modest.

More recently, continued progress in data recording and storage along
with the arrival of increasingly powerful computational engines have fostered
considerable progress in forecasting methods that apply flexible machine
learning methods to high-dimensional multivariate data (large N'). However,
establishing the theoretical properties of the estimates of these models, let
alone analytically characterizing the accuracy of the resulting forecasts is
difficult in settings with nonlinear mappings from predictors to outcomes for
data that are not strictly exogenous and often display strong forms of serial
persistence and even non-stationarities. Convergence rates for the estimates
of the parameters of these high-dimensional models are often sufficiently
slow that estimation error is a major concern unless N is very large.?

Panel forecasting models offer a potential mid-point between the tradi-
tional univariate or low-dimensional VAR models and modern high-dimensional

2Machine learning methods offer the potential of flexibly capturing nonlinearities but
outside settings with independently and identically distributed data it is difficult to es-
tablish analytically the properties of the resulting estimates and forecasts.



machine learning methods. Panel models are typically assumed to be linear
and can handle data sets with both high time-series and cross-sectional di-
mensions. Linearity of the assumed forecasting model makes it feasible to
establish the properties of the subsequent forecasts (e.g., bias) and to char-
acterize measures of forecasting performance such as mean squared forecast
errors analytically. Moreover, panel designs such as two-way fixed effects
can be used to capture time-invariant sources of heterogeneity and incorpo-
rate the effect of common shocks. In parallel with VAR models, dynamic
panels can capture autoregressive predictive effects, although they generally
do not allow for the same rich lead-lag patterns across variables as VARs are
designed to do. Conversely, panel models tend to be relatively parsimonious,
requiring the estimation of considerably fewer parameters than VARs fitted
to the same set of variables exactly because they typically do not account
for an unrestricted set of dynamic lead-lag cross-effects.

Panel forecasting methods can be particularly attractive in settings with
a small or medium-sized time-series (T) dimension. Indeed, dynamic panel
forecasting models can be used, when implemented with empirical Bayes and
shrinkage methods, in situations with a small time-series dimension, see Liu
et al. (2020) and Giacomini et al. (2023). A large cross-sectional (N) dimen-
sion can facilitate more accurate parameter estimates in settings with high
degrees of homogeneity in the model parameters yet enough independent
variation in the predictors included in the model.

In this review, we cover a number of topics related to panel forecasting.
We begin in Section 2 by examining the determinants of the accuracy of
forecasts based on unit-specific regressions, pooled regressions and random
effect models. Section 3 extends the analysis to cover forecast combinations
based on univariate and pooled forecasts. Alternative forecasting methods
such as Bayesian estimation, panel and global VAR models and machine
learning models are covered in Section 4. Choice of loss function and eval-
uation of panel data forecasts is discussed in Section 5. Finally, Section 6
concludes.

2 Bias-Variance Trade-offs in Panel Forecasting

Due to their linear form, panel forecasting models make it easier to analyze
the bias-variance trade-offs involved in exploiting cross-sectional information
and commonalities across individual units to obtain more accurate forecasts.
These trade-offs are determined chiefly by the degree of parameter hetero-
geneity across individual series: If the model parameters are identical across



units, a simple pooled estimation scheme is optimal. Conversely, the pres-
ence of strong parameter heterogeneity makes it more attractive to use unit-
specific estimation and proceed on a unit by unit basis, assuming that the
data has a minimal 7" dimension that allows reasonably accurate estimation
of the required parameters. If heterogeneity is largely due to unit-specific
effects, a random effects or fixed effects framework can be adopted.

We begin our analysis by discussing these points and highlighting the
main determinants of which panel forecasting methods can be expected to
perform well in a given empirical application. This analysis offers practical
advice for applied economists with an interest in choosing among different
panel forecasting approaches.

2.1 Panel Regression Model

Our starting point is the linear panel regression model:
Yir = BiXit + €it, (1)

where ¢ = 1,2, ..., N refers to the individual units and t = 1,2, ..., T refers
to the time period, y;; is the outcome of unit ¢ at time ¢, x;; is a K x 1
vector of regressors—or predictors—used to forecast y;:, 3; is the associated
vector of regression coefficients, and €; is the disturbances of unit ¢ in pe-
riod ¢. For simplicity, we suppress any references to forecast horizon in our
notation and simply assume that data up to time 7T is used to generate a
one-step-ahead forecast of y; r11. However, insofar that a direct forecasting
approach is being used, this setup can easily be generalized to arbitrary fore-
cast horizons, h, by requiring that x;; contains variables that are observed
with the appropriate lag, i.e., variables known at time ¢ — h for an h-period
forecast horizon.

Before proceeding, we introduce some notations. Stacking the time se-
ries of outcomes, predictors and disturbances, define y; = (vi1, yio, - - -, i)’
X; = (xgl,xgl . X.p), and g; = (&1,¢€i2,...,67). Further, let y =
(Y1, Y5 -,y X = (X, X5, ..., X)), and e = (¢, €),...,¢e)".

The specification in (1) includes as a special case the canonical dynamic
panel model studied, in some form, by Baltagi (2005), Trapani and Urga
(2009), Liu et al. (2020) and other authors:

Yit = Boi + BriVit—1 + Poitit + €t (2)

It is common in the panel forecasting literature to consider three broad
classes of panel estimators, namely homogeneous (pooled), heterogeneous,



and shrinkage estimators, the latter often implemented in a Bayesian setting.
Homogeneous estimators reduce the impact of estimation error by pooling
information across units in the cross-section. The benefit from this tends
to be strongest when the time-series dimension, 7', is small and the cross-
sectional dimension, NN is large. When the underlying regression parameters
display considerable heterogeneity, however, the benefits from pooling come
at the cost of biasing individual estimates which will lead to a deterioration
in forecasting performance.?

Early empirical evidence indicated that pooled estimators often produce
better forecasts than heterogeneous estimates (Baltagi and Griffin, 1997,
Baltagi et al., 2002; Rapach and Wohar, 2004). Other studies have found
that the ranking of the performance of different panel forecasting approaches
varies across applications. Trapani and Urga (2009) use Monte Carlo simu-
lations to show that the ranking of forecasts based on heterogeneous versus
homogeneous estimators depends on the level of parameter heterogeneity.
In particular, homogeneous estimators perform best if the degree of param-
eter heterogeneity and dependence across units are both low. If the degree
of heterogeneity is high, the pooled estimator ceases to produce accurate
forecasts and the relative performance of heterogeneous and Bayesian esti-
mators tends to improve, with the latter performing particularly well in the
presence of strong cross-sectional dependencies. Similarly, Brucker and Siliv-
erstovs (2006) find that a conventional fixed effect estimator along with a
hierarchical Bayes estimator produce more accurate out-of-sample forecasts
of international migration than the pooled OLS estimator. In turn, these
estimators tend to produce better forecasts of international migration than
heterogeneous estimators. Finally, Garcia-Ferrer et al. (1987) empirically
investigate the bias-variance trade-off in the context of predicting growth
rates for the US and EU countries. Their findings suggest that for some
series individual forecast were more precise whereas others benefited from
pooling.

To examine the trade-off between pooled and individual estimation, we
will make a number of simplifying assumptions designed to make the anal-
ysis particularly transparent. First, we will assume that the error term
g; ~ iid(0,0%I7) with a finite variance and that the error term is (con-
ditionally) uncorrelated across individual units. Additionally, we assume
that the regressors are exogenous with finite and positive definite sample
covariance matrices, Q7 = T_IXQXi and Qnr =T 'N71X'X.

3Notice, however, that the individual estimates will also be biased in the presence of
lagged dependent variables, see Pesaran and Smith (1995).



We can then quantify the forecast accuracy in the square error sense. We
start by considering two opposite approaches to generating forecasts with
panel data, namely zero pooling and full pooling. This corresponds to cases
with very high and very low levels of parameter heterogeneity, respectively.

Pesaran et al. (2022) discuss the case where the coefficients are random
and independent of the regressors?

Bi=B+mn; mn;~(0,Q).
An alternative assumption is non-random, fixed coefficients 8; and we will
comment on this case below, too.
2.2 Individual Estimation

The first set of forecasts we consider are based on individual estimates and
ignore information from other units:

B; = (XiX;) 'Xly;.

Using these estimates, we can generate one-step-ahead forecasts of the
individual units, y; 741, as

R ~t
Yi, r+1 = BiXiT41- (3)
The associated forecast error is
~ ~ ) /
€ T+1 = Yi,T+1 — Yi,T+1 = E,T+1 — (161' - ,37;) Xi,T+1-

The mean square forecast error (MSFE) associated with the individual fore-
casts is

B(e2ri1) = 02 + X B [(8; - B)(8; - B | xiria

1 XX\ ! 1\ @
=07 + oIXi 41 ( ZT Z) Xir11 =07+ Op <T>

see Pesaran et al. (2022). In many economic panels, T is often quite small
such that the O, (%) component of the MSFE can be substantial. Note also
that the MSFE depends on x;741. The extent to which the uncertainty
around a given parameter impacts the MSFE therefore depends on the value
of the predictor vector in the forecast period, x; 741.

“Pesaran et al. (2024) consider the case where coefficient vectors and regressors are cor-
related. However, for simplicity of exposition, we maintain the assumption of uncorrelated
random coefficients here.



2.3 Pooled Estimation

Alternatively, forecasts can be based on pooled estimation of the parameters
B =(X'X)"'Xy.
The forecasts associated with this pooled estimator are given by
i1 = B X1, (5)
while the associated MSFE becomes
E(&r41) = 0f + X711 B {(B —B)(B - /61')/:| Xi,T+1
-1

xx\'1 & X'X
A +E e (37) ¥ 2% (5+) e-a
REZ)

J
1 X'X 1L XX (X
R (w) N2 T <N ) Xir+1

Jj=1

XX\ 11 & X)X,
=07 +E | X111 <NT) N Z o ( ; ) (B; —B)
J=Lli#i

(6)

Under the assumption of random coeflicients, the MSFE under pooled
estimation simplifies to

- 1
E(& 1) =07 + X 71 Xiry1 + Oy <N> ; (7)

see Pesaran et al. (2022). Under the assumption of fixed coefficients, the
MSFE remains as listed in the last line of (6).

Since N is typically large in panel data, estimation uncertainty either
vanishes or is greatly reduced under pooled estimation. Conversely, pooled
estimation gives rise to the term capturing the squared bias, which is caused
by parameter heterogeneity.

The bias-variance trade-off in forecasting performance is clear from a
comparison of equations (4) and (6). Individual forecasts will be more pre-
cise if the estimation uncertainty, weighted by the regressors in the forecast



period, is smaller than the squared bias introduced by parameter hetero-
geneity. Otherwise pooled forecasts will be more precise. Note, that the
effects of parameter heterogeneity and estimation uncertainty alone do not
determine forecast uncertainty. What matters is instead the interaction of
these two elements with the values of the regressors in the forecast period.

2.4 Panel Data with Short T

A sizeable part of the literature on panel data is concerned with models that
allow for 7" to be very small. In this setting, most attention is on random and
fixed effects models and forecasting has been extensively reviewed by Baltagi
(2013). We merely highlight the main issues here and refer to Baltagi’s
survey for a detailed discussion.

With short T, estimating heterogeneous slope coefficients may not be
possible or desirable. The literature therefore focused on the random effects
specification, which takes the form

/
Yit = o+ 0'X + uyg, Uig = 1); + Eit,

where 7; ~ N(O,ag) and e; ~ N(0,02). Forecasts are based on the Best
Linear Unbiased Predictor (BLUP) of Goldberger (1962)

A~ S A/ A~
Ui m+1 = agrs + 0 qrsXir+1 + TaT 1 52 (I! ® er)ucLs (8)

and 1; is the 7th column of I, ¢ is a T x 1 vector of ones, &qr,s and éGLS
are estimated by GLS with covariance matrix

¥ =To,P + 021
P = M, (M, M,)"'M/,, M, = Iy ® ¢7, grs = Y — & gLs — x0as,
1 N T
A2 L )2
[ N(T— 1) ;;(Uzt Uz) )

and &% = % Zf\i | H? with #; obtained from the fixed effects estimation.’®
The last term in (8) is an estimate of the individual specific effect.

Baltagi and Li (1992) derive the BLUP when the error term is autocor-
related and Baltagi and Liu (2020) extend the BLUP of the random effects
model to unbalanced panels.

®See Pesaran (2015) for details of the random effects estimation.



Liu et al. (2020) consider a correlated random effects approach that
allows the parameters that are heterogeneous in the cross-section to be cor-
related with the predictors. They develop an empirical Bayes estimator of
the parameter that captures unobserved individual heterogeneity. They also
consider predictors based on plug-in and pooled-OLS empirical Bayes esti-
mators and find in Monte Carlo simulations and in an empirical application
that their empirical Bayes predictor dominates these two alternatives.

Giacomini et al. (2023) also discuss shrinkage methods, including the
James and Stein (1961) shrinkage estimator, which pull individual estimates
towards a common mean. Their frequentist random effects approach aims to
obtain accuracy of the individual forecasts as opposed to forecasts that are
accurate “on average”. Effectively, their individual weighting approach uses
past time-series data to estimate the weights of a combination of time-series
and pooled forecasts. They show that their individual weighting approach
avoids poor forecasting performance even in areas of the parameter space
where the performance of the underlying forecasts can differ significantly,
i.e., it is minimax-regret optimal relative to an approach that uses either
individual time-series forecasts or pooled forecasts.5

A fixed effects specification may be preferred in some settings. Any
correlation between the intercept and the regressors, which are the concern
of Liu et al. (2020), are then of no importance. The fixed effects model is

yir = ;i + 0'xy + i, i~ (0,0%).

Unbiased estimates of o; and 6 are
1 r /
G = T ;yit — OppXi,

and

N -1 N
Opp = (Z X;Mxi> > XMy, M=Iy—uef/T.
i=1 =1

However, the estimator for «; does not benefit from the cross-section dimen-
sion and relies on large 7', so for panels with few time-series observations
the fixed effects estimator and, consequently, the forecasts will suffer from
low precision.

Focusing on estimating the intercept of a forecasting model, Giacomini et al. (2023)
consider three different weighting schemes, including minimax regret optimal weights,
inverse MSFE weights, and estimated oracle weights.



Forecasts of time-series with a very short T-dimension is related to the
so-called “cold-start” forecasting problem which arises when no data points
are available. Examples include forecasting the initial stock market price
of a company undertaking an IPO or predicting the number of users of a
new app. Without any historical data on the variable, one will have to draw
heavily on estimates from existing data and make assumptions on how strong
the similarities are between existing series with longer time records and the
new one. One approach is to identify clusters of existing variables for which
parameter estimates are available and then construct forecasts of the new
variable as a weighted average of forecasts from those clusters. Heterogeneity
among the units within each cluster can then be used to compute confidence
bands on the forecasts of the new unit. Bayesian hierarchical approaches
(discussed below) is another possibility.

3 Forecast Combinations

The trade-offs between individual and pooled forecasts suggests that com-
binations of individual and pooled forecasts in (3) and (5) may increase
forecast accuracy. For the random coefficients case, Pesaran et al. (2022)
consider the following combined forecast:

y'ff%—i—l = wi@i,T—i—l + (1 — wi)gi,T—&-l,
where w; is the combination weight. The corresponding forecast error is

(¢) N ~
;1 = Wiir1 + (1 — wi)é; ria,

and the MSFE of the combination forecast becomes
MSFE(e%.,) = w?Var(éiz)+ (1— wi)*Var(Eirsa) (9)
+2w; (1 — w;)Cov(€; 7418;741),

since both forecasts are unbiased in the random coefficients model. The
optimal weights are then
. Var(&; r+n) — Cov(€ 11, €i7+n)

w, = = N = =
" Var(é;rin) + Var(é;r+n) — 2Cov(€; r4hy €i,74h)-

(10)

Using the expressions in (4) and (7), and the fact that Cov(&; r4p, € 74h) =
02 + O,(1/N), yields the optimal weights

X; 74182 741 0 ( 1 )
D )

-1
_1 92 (XX,
X;,T-&-l [T lo; ( Tf) +Q} X T+1

*_
w; =

10



see Pesaran et al. (2022). Under a fixed coefficients specification, a similar
expression can be derived using the expressions in (4) and (6).

Note that the weights are based on the square error loss function of
the forecast rather than the mean square error of the parameter estimate.
This results in the presence of the regressors in the forecast period in the
expression of the weights, which determine the importance of estimation
uncertainty and heterogeneity.

As T increases, one of the weights will converge to unity and the com-
bined forecast will equal the forecast from this individual model. However,
when T is small or of modest size, the weights can differ substantially from
unity if the parameter heterogeneity is sufficiently large.”

Inserting equation (10) in (9) and noting that the two forecasts are
asymptotically uncorrelated implies that the MSFE of the combination fore-
cast using the optimal weights can be written as

MSFE(’LUZ*) = w;kMSFE(ZQz,T—H) = (1 — w:)MSFE(gz,T—FI)

Hence, for finite 7" and abstracting from estimation error in determining w;,
we have that 0 < w} < 1 and the combination MSFE will always be smaller
than both the individual and the pooled forecast’s MSFEs.

In practice, 2 and aiz need to be replaced by estimated counterparts,
which yields

, .
Xi,T+1QXi,T+1

pu— _1
/ _ 1492 XX, A
X T+1 |:T 1O'Z- (ZTZ + Q X T+1

; (11)

g

where one could use the following plug-in estimates

N 1 N ~ = ~ =\/ = N R
Q@ = —=>(8:-8)(B-8), B=N"I_5.
i=1

N —1+4
i=1

62 = (T—K)_l(Yi_Xi/éz‘)/(Yi_Xi/éi)'

7
Yet, E(Q) = Q + 7 Zf\il 02Q;; and an unbiased estimator of § is given
by Q= — ﬁ Zf\;l &3Q;T1. Using this, we have
/ Q 1 ZN AQQfl .
X T+1 NT 24i=19; R | Xi,T+1

w, = 1 ] - 1 N 1 ) (12)
/ ~9y— ~9—1] o
X T+1 [T‘%’ Qi +Q— 572110 QiT} Xi,T+1

"For the fixed coefficients case, (4) and (6) could be used in (10) to obtain combination
weights.

11



which Pesaran et al. (2022) refer to as bias-corrected weights. While Qis an
unbiased estimate, it could lead to negative weights in small samples. When
using Q, Pesaran et al. (2022) therefore restrict the weights to lie between
0 and 1.

Figure 1, taken from Pesaran et al. (2022), plots the MSFE of the in-
dividual, pooled and combination forecasts with estimated weights. The
MSFE is calculated by simulation using the model y;; = Bz + € with
Var(p;) = a%, which is the variable shown on the horizontal axis. On the
vertical axis is the resulting risk in terms of MSFE.

The risk of the individual forecast does not depend on the degree of
parameter heterogeneity and therefore shows as a horizontal line. When the
parameters are homogeneous (0727 = 0), the risk of the pooled forecast is much
smaller than that of the individual forecast due to the increased estimation
efficiency. As the parameter heterogeneity increases, the risk of the pooled
forecast increases and eventually exceeds that of the individual forecast. The
third line in the plot is the risk of the combination forecast. At low levels
of parameter heterogeneity, the risk from the combination forecast exceeds
that of the pooled forecast but falls below that of the individual forecast
as estimation uncertainty yields a small positive weight on the individual
forecasts. As the level of parameter heterogeneity increases, the relative
performance of the combination forecast improves and eventually it becomes
more precise than either of the two forecasts that it combines.

Pesaran et al. (2024) extend the analysis to the case where the regres-
sors are weakly exogenous and correlated with the parameters. They derive
weights designed to be optimal for the average forecast in the panel. Com-
pared to the simple case discussed here, these optimal weights are somewhat
more complicated and involve expressions that reflect the less restrictive as-
sumptions. Additionally, they introduce optimal weights for the combina-
tion of forecasts based on individual and fixed effects estimation. In addition
to the average MSFE, Pesaran et al. (2024) examine the entire distribution
of MSFE-values across the individual units. It emerges in two applications
that, among the range of forecasting methods they examine, the combina-
tion forecasts are the only methods not to provide the worst forecast for
any unit in any period, thus making them attractive from a minmax regret
perspective.

Issler and Lima (2009) propose ways to combine bias-corrected panel
forecasts. Their approach assumes that forecast errors can be decomposed
into a constant forecaster-specific bias term and aggregate and idiosyncratic
shocks, both of which have zero means unconditionally. The forecaster-
specific bias term is assumed to be identically distributed but need not be

12



Figure 1: Risk versus parameter heterogeneity
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Note: The plot displays the risk in terms of the expected MSFE of forecasts based
on pooled and individual estimates and of combination forecasts. The horizontal
axis measures the degree of parameter heterogeneity in the simple panel regression
model. The expected MSFE is calculated via 10,000 simulations with the DGP y;: =
Bitie + oicir, where iy = fgi + Owivie, 02 ~ iid (1 + X%) /2, o2, ~ iid (1 + Xf) /2,
Bi = 14 onNi, ity Vit, M, i ~ 1idN(0, 1). Since there is only one regressor, forecast
performance is a scaled version of parameter heterogeneity. Source: Pesaran et al.
(2022).

independent across forecasters. Using this setup, they show that a simple
pooling of forecasts is MSFE optimal in the limit N,T" — oco. They propose
a feasible bias-corrected average forecast that subtracts an estimated bias
term from the equal-weighted average of the individual forecasts and show
that this is optimal and equivalent to the conditional expectation. This
procedure is appealingly simple, requiring only the estimation of a single
parameter as opposed to a large set of combination weights.® Monte Carlo
simulations suggest that this simple bias-adjustment performs well compared
to an equal-weighted forecast that does not bias-adjust the underlying fore-

8Specifically, their estimator first computes the time-series averages of individual biases
from the mean of individual forecasters’ prediction errors. It then computes the equal-
weighted cross-sectional average of these forecaster-specific time-series averages. Finally,
the feasible bias-corrected average forecast is computed as the cross-sectional average
forecast adjusted for the average bias.

13



casts or a forecast combination scheme that estimates the individual weights
through a simple time-series projection of outcomes on forecasts. Even in
situations where the simple bias-adjusted average forecast is not optimal, it
typically only performs marginally worse than the best of these alternative
forecasts.

Wang et al. (2019) propose using in-sample statistics, such as an F-
test statistic for parameter homogeneity or Mallows criterion to construct
weights for the combination of different panel data models. Their Monte
Carlo simulations suggest that in panel data models with high R?, forecast
combinations using the Mallows criterion can work well. In medium-to-low
R? settings, an FGLS estimator of Swamy (1970) performs best.

Huang et al. (2019) use combinations of random and fixed effects fore-
casts to address the issue discussed in Section 2.4 that the fixed effects
forecast will be inefficient and the random effects forecast will be biased in
the presence of correlation between «; and the regressors. They use Stein-
like combination of the two estimators in their forecast combination. Their
Monte Carlo results suggest that the combined forecast does well in deliv-
ering a precise forecast in the mean square error sense.

4 Alternative Forecasting Approaches

Multivariate forecasting approaches that incorporate dynamics into panel
data models have been developed in both the frequentist and the Bayesian
context. This section discusses alternative forecasting methods that can be
used for at least some types of panel data such as Bayesian hierarchical
forecasts, BVARs with large numbers of variables, panel and global VARs,
and machine learning approaches.

4.1 Bayesian Panel Forecasts

A range of Bayesian methods is available to use for forecasting with panel
data. Lindley and Smith (1972) discuss the hierarchical approach to the
linear regression model and Gelfand et al. (1990) provide a Gibbs sampler
for this model.? Consider the linear regression model in (1) with the added
assumption of normality,

vit = Bixit + €it, it ~ N(0, 02)'

9A review can be found in the book by Greenberg (2008).
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Suppose we introduce a prior that assumes 3, is normally distributed with
mean 3 and covariance matrix X 3. Completion of the set up requires priors
for B, which is again normal with mean B and precision matrix SB and
a prior for X3, which is an inverse Wishart with scale matrix > and b,
degrees of freedom. Finally, the error variance o? is assumed to have an
inverse Gamma prior with scale parameter 62 and 7, degrees of freedom.!®

Lee and Griffiths (1979) propose several different approaches to estimate
the parameters of such a model, including an empirical Bayes approach and a
Bayesian approach, without the use of the Gibbs sampler. Their estimators
were used in an application to electricity consumption by Maddala et al.
(1997). Pesaran et al. (2022) evaluated the forecast performance of these
methods and found this to be quite similar to that of the combined forecast
of Section 3.

The model parameters can also be estimated using the Gibbs sampler,
which draws iteratively from a set of conditional posteriors (Gelfand et al.,
1990):

-1
 B;]- ~N(b;,Si), whereb; = S; ( Xy + X3 16) and S; = (U_QX;Xi + 2;1)

o 02‘. ~iC ([NT + 7] /2, [ Yoiny(yi - X8, (yvi — XiB;) + 1705—2}>

o B|- ~N(h,Sy), whereh = S, (251 SN B+ SBB) and S, = (Nzgl + SB)_

o Mgl ~W (N—i— s, {Zf\; (8: - B) (B; ,3) + VEE} 1).

The Gibbs sampling approach is the most computationally expensive of
these methods. Consider the example of a simple panel AR model with
an intercept and one lagged dependent variable. For the case of N = 500,
T = 20, we calculated the ratio of computation time different methods take
to compute the forecasts for each of the 500 units relative to the individual
forecast using Matlab. The pooled forecast uses about 20% of the computing
time of the individual forecasts, the combination forecast takes about 3.5
times longer, the Bayesian approach of Lee and Griffiths (1979) about 6.5

ONormality of the parameters and error terms can be relaxed using scale mixtures
of normals as suggested by Geweke (1993). Then B; ~ N(B, 77;1 ¥g) with ng,; ~
G(vg/2,v8/2) and €;: ~ N(O, n;ilaQ) with 7 ; ~ G(ve/2,v:/2). Further extensions can be
found in Greenberg (2008). Group structure in the individual units can be accommodated
in the model via a Dirichlet process prior (Escobar, 1994; Escobar and West, 1995).
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times longer, but a Gibbs sampler with 1500 iterations takes over 1000 times
longer.

Zellner and Hong (1989) use Bayesian shrinkage in the context of fore-
casting international growth rates for 18 countries. They find that using
the Bayesian approach improves forecast accuracy over alternatives used by
Garcia-Ferrer et al. (1987).

Hsiao et al. (1999) consider empirical Bayes estimation of the hierarchical
model for a dynamic panel data model with short 7. Under the empirical
Bayes approach, the variances are estimated from the data without a prior
distribution. In general, however, their results suggest that the full Bayesian
estimation of the hierarchical model is preferable.

4.2 VARs with Many Variables

VAR models provide a flexible way to handle (linear) dynamics of quite gen-
eral form. Typically, VARs include variables with little in common such as
GDP growth, interest rates, and unemployment rate. It would therefore not
be meaningful to impose that the parameters are identical across individual
variables. For example, the variables are unlikely to have the same mean
or degree of persistence. In contrast, panel data sets typically consists of
variables that are broadly comparable and measured in the same units such
as inflation in different regions or stock returns across different firms. It can
then make sense to assume common parameters and impose stronger homo-
geneity on the estimates. Hence, panel data often provide natural shrinkage
targets for the parameters which are different from the targets assumed by
common priors for VARs such as the Minnesota prior.

VARs are commonly used when N is small and T is large. However,
Banbura et al. (2010) show that Bayesian VAR methods can now be ex-
tended to handle hundreds of variables with appropriately chosen priors.
This development is promising and offers different ways to handle variable
selection and implement shrinkage.!’ Chapters 2 and 3 of this Handbook
deal with Bayesian VARs in macroeconomic forecasting. Generally, how-
ever, the specification of the model and priors does not necessarily account
for the panel nature of the data. This contrasts with the panel and global
VAR methods discussed in the next section.

Koop and Korobilis (2019) forecast inflation in the eurozone using a large
dimensional panel VAR. They develop shrinkage priors that account for the

HBaribura et al. (2010) show that Laplace priors over the parameters achieve Lasso
variable selection while Bayesian priors correspond to standard shrinkage of the parame-
ters.
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panel nature of the data. See also Korobilis (2016) for a discussion of priors
for panel VAR models.

4.3 Panel and Global VARs

International macroeconomic data sets often contain observations on a mod-
erate number of countries, each with a long history of data. This is thus an
environment with 7" large and N small to moderate, which contrasts with
the settings considered so far. Panel and global VAR models offer a natural
setting for these types of data.'?

Panel VAR models allow the K x 1 outcome vector, y;, to depend on
lags of yj; for all j = 1,2,..., N in addition to a set of exogenous regressors,
Xit -

Vit = ot + Ai(L)y: + Bixyp + ugy, (13)

where y; = (¥14, Y%, -- -, ¥'ne)» and A;(L) is a lag polynomial, oy is a vector
of constants, x;; a vector of exogenous variables with associated parameter
matrix B;, and u; = (uf,,uf,, ..., ufy,) ~ d(0,%,).

The general version of the panel VAR in (13) suffers from a proliferation
of parameters and different approaches have been taken to either reduce the
number of parameters or estimate them via shrinkage. For example, in the
context of a model for microeconomic panel data, Holtz-Eakin et al. (1998)
restrict heterogeneity to the constant intercept but pool the time-varying
slope coefficients assuming that only own lags have non-zero coefficients.
This contrasts with studies that focus on macroeconomic data, where dy-
namic interdependencies are typically included.

Canova and Ciccarelli (2004) estimate the coefficients of (13) using Bayes-
ian methods with two kinds of priors. First, they use hierarchical priors
similar to the ones discussed in Section 4.1 but decompose the vector of au-
toregressive parameters into constant, unit-specific parameters and common
and time-varying coefficients. Second, they use Minnesota-type shrinkage
priors (Litterman, 1980). They apply the Bayesian panel VAR models to
forecast growth rates in G7 economies and find that the hierarchical models
often provide particularly accurate forecasts.

Camehl (2023) suggests using LASSO penalization in the estimation of
the parameters in (13). She applies this approach to a set of two and four
macroeconomics variables over a set of five and 20 countries, respectively.

2The panel VAR literature has been reviewed by Canova and Cicarelli (2013) and the
global VAR literature by Chudik and Pesaran (2014).
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Her analysis suggests that the LASSO approach performs well without the
need for numerical integration.

Global VAR models (Pesaran et al., 2004; Dées et al., 2007), or GVARs,
provide an alternative to panel VARs. GVARs establish separate VAR mod-
els for each country and then connect the different VAR models via global
variables. Pesaran et al. (2009) use GVAR models to forecast five macro
and financial variables. Their results suggest that model averaging offers
a simple but effective tool for handling model uncertainty in a forecasting
context. Additional forecast applications of GVARs are reviewed by Chudik
and Pesaran (2014). A Bayesian approach to generate forecasts with the
GVAR model has been suggested by Crespo Cuaresma et al. (2016).

4.4 Machine Learning Methods

What are often referred to as machine learning (ML) methods have become
widely used in the economic forecasting profession. For example, Chapter 10
of this Handbook discusses the use of the LASSO in fixed effects models to
select among a large number of possible predictors when the time series
dimension is large.

Many ML methods can be thought of as flexible semi-parametric estima-
tion techniques. When applied to suitable data structures, these methods
offer several advantages such as (i) a flexible mapping from input variables
to forecasts that can accommodate both nonlinear effects and interaction
terms; (ii) the capacity to handle high-dimensional data sets; (iii) the abil-
ity to simultaneously provide parameter estimation and variable selection.

While these can be important advantages, there are also some real limita-
tions to the application of machine learning methods in economic forecasting
due to the nature of the data sets encountered: (i) Theoretical results on the
properties of forecasts generated from ML methods typically assume data
that are independently and identically distributed. In practice, economic
data typically deviate strongly from this assumption with time-varying and
persistent heteroskedasticity (ARCH effects) and serially correlated (persis-
tent) outcomes. (ii) Often, the training data used to estimate economic
forecasting model is not very long (small T-dimension) or wide (small N
dimension). In these cases, approximations to underlying non-linear func-
tional forms for the forecasting model are likely to be inaccurately estimated
and dominated by estimation error. (iii) Low-frequency components such
as recessions are often important in economic data. By definition these
components do not show up very often in the data, making it difficult even
for supervised learning algorithms to uncover stable and reliable predictive
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patterns, let alone approximate them with a high degree of accuracy. Non-
stationarities induced by structural breaks to the data generating process
pose another challenge for economic forecasting models and further limit the
effective T' dimension of the estimation sample.

5 Forecast Evaluation

While statistical methods for evaluating univariate forecasts are well devel-
oped, how to evaluate panel forecasts poses additional challenges that have
not been addressed to the same extent. For example, one forecaster may be
interested in the average MSFE, i.e., the MSFE averaged cross-sectionally.
Another forecaster could be interested in avoiding very poor forecasts for
any individual unit, which suggests more of a minmax loss function defined
on the individual forecast errors. A third forecaster may be interested in the
joint distribution of forecast errors, suggesting more of a portfolio approach.
In this section we discuss various formulations of the loss function before
turning to the question of how to statistically evaluate panels of forecasts.

5.1 Loss Function

What is considered a “good” forecast needs to be specified in the context of
the forecaster’s objective function, which is often referred to as the loss func-
tion, L(-). It is common to assume that this only depends on the distance
between the realized, y; 741, and predicted values, §; 741, of the outcome,
i.e., the forecast error, e; 741. Further, it is common to assume squared
error loss for the individual units,

Lirs1 = L(Ys ra1, Gire1) = €7 y1- (14)

This loss function is regularly applied to the individual units and it is com-
mon to estimate the associated loss by computing a simple time-series av-
erage over a range of pseudo-out-of-sample forecasts from, say, 7o + 1 to T,
which yields the MSFE:

T

_ 1 )
L;= T T, Z é2. (15)
t=To+1

It is less clear how to evaluate an N x (T — Tp) dimensional matrix of
forecast errors. With both a cross-sectional and a time-series dimension,
several loss functions become possible.
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A natural starting point to evaluate the N-dimensional vector of MSFE
losses (L1, La, ..., Ly) is the grand average loss, i.e., the squared-error loss
averaged across both, the T' — Ty dimensional time-series of individual fore-
casts and N cross-sectional units:

1L
v > L (16)
=1

Instead of the grand average in (16), one could consider minimizing for
a given time-period, T+ 1, the average cross-sectional loss:

L

N

_ 1 R
Lpy = N Z &7 (17)
=1

This loss function makes most sense if each unit has the same weight in the
forecaster’s objectives; alternatively, a weighted average can be used. Fore-
cast evaluation on a period-by-period basis for a cross-section of outcomes
is still a relatively unexplored area, see Qu et al. (2023).

When the units of the variables being predicted are not directly compa-
rable, it is less appealing to compute a simple average of MSFE-values across
all variables. Alternatives based on percentage loss such as the mean abso-
lute percentage error (MAPE) or mean squared percentage error (MSPE)
can be used in this case although the scaling of forecast errors by either the
outcome or by the forecast introduces new issues, particularly when these
values are close to zero or switch signs.

One can also consider loss functions defined over the distribution or
quantiles of the cross-section of MSFE-values, F,(L;), where F(.) is the
cumulative distribution function defined on the cross-section of expected
squared error loss and ¢ € [0,1] is the particular quantile. Forecasting
methods with a low probability of generating large losses for any individual
unit might be desirable. A minmax loss function would attempt to minimize
max; L; for i =1,2,... N.

Any ranking of forecasting approaches is likely to depend on which of
these loss functions is chosen. Forecasting methods differ in their sensitivity
to sample information; approaches such as forecast combination often do
not provide the single most accurate forecasts with the lowest MSFE values
but possess desirable robustness properties by offering relative safety as they
rarely generate the least accurate forecasts with the highest MSFE values
for individual units.
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5.2 Tests of Equal Predictive Accuracy

Time-series of cross-sectional averages of losses such as those in (16) can
be used to set up panel versions of the Diebold and Mariano (1995) test
which is commonly used to compare the accuracy of alternative forecasts of
individual time series. Papers that pursue this route include Pesaran et al.
(2013), Akgun et al. (2024), and Qu et al. (2024).13

Suppose we are interested in testing the null that two forecasts, A and
B, are expected to be equally accurate across all time periods and cross-
sectional units:!*

Ho : E[Lit o — Lit,B] = E[ALy] = 0.

This null is naturally tested on N (T — Tj) pseudo-out-of-sample forecasts
using a test statistic that extends the Diebold and Mariano (1995) test to
the panel domain:

T N
\/ﬁ D i=Tyr1 D=1 ALit

PDM =
G(ALjy) ’

(18)

where 6(ALj;) is a consistent estimator for \/ Var (\/ﬁ ZtT:TO 41 Zf\i 1 ALit> .
One can be compute 6(AL;) in different ways. Let Ry = N—1/2 Zfil AL;

be the scaled cross-sectional average loss differential at time ¢. Under stan-

dard assumptions of weak serial dependence in the sequence of forecast

losses, the standard error in the denominator of (18) can be computed using

a Newey-West type estimator (see, e.g., Qu et al. (2024)):

J

G(AL) = | Y (1=3/DA0),

j=—J
where J > 0 is the maximum lag length and 4(j) = (T—Tp—j) ! ZtT:To-i-j—Irl Rt_jf%t
with B, = R; — R and R = (T —Ty) ! Zg;:Tg-i—l R;.'® Under standard reg-
ularity conditions, PDM 4 N(0,1).

In practice, we may not only be interested in testing whether two sets of
forecasts are equally accurate for the grand mean average loss in (16) but

13For a review of testing of equal predictive accuracy see Chapter 11 of this Handbook.
M¥or simplicity, we suppress any dependence on forecast horizon, but the null can be
tested separately for a given forecast horizon or jointly across multiple horizons.

For j <0, 4(j) = 4(~j)-

21



also whether this holds for clusters (subgroups) of the data. In this context,
Qu et al. (2024) consider testing predictive ability for time-series clusters
or cross-sectional clusters of variables. For the latter case, suppose that
the individual units have been categorized into K cross-sectional clusters,
denoted by Hi, Ho, ..., Hi, with |H;| denoting the number of elements in
the jth cluster, with Zszl |H;j| = N. Define

T
Dj = [H["VA(T=Tp)"' > > ALy,
i€H; t=Tp+1

The null hypothesis of equal predictive accuracy within each cross-sectional
cluster can then be written as

Hy: ED; =EDy = --- = EDg = 0. (19)

Defining the average of the loss differences across the K cross-sectional
clusters as D = K1 Z]K:l D;, Qu et al. (2024) apply the test statistic!®

VKD

JP = .
VE =)7K (D - D)?

6 Conclusion

This chapter reviewed different approaches for forecasting with panel data.
Key to the success or failure of a given forecasting approach is how it han-
dles parameter heterogeneity and estimation error. Strategies such as pool-
ing, individual unit-specific estimation, fixed or random effect estimation,
forecast combination, and Bayesian modeling exploit the associated bias-
variance trade-off in different ways. Panel data sets often provide natural
shrinkage targets which can be exploited to reduce the impact of estima-
tion error - without introducing too sizeable a bias - assuming that some
level of commonality exists in the model parameters pertaining to individual
variables.

An advantage of panel forecasting methods is that analytical results are
available for understanding the effect of (correlated) parameter heterogene-
ity and dynamics on the performance of different forecasting approaches.
Since these are defining features of many economic data sets, it is important
to have theoretical results available for a class of models that is sufficiently

16Qu et al. (2024) discuss how to compute critical values for this test statistic.
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simple and transparent to lend itself to analysis. Insights from this class
of models can then be used as building blocks for more sophisticated and
flexible forecasting methods, e.g., from machine learning.

We would not, in general, expect a single panel estimation approach
to be uniformly dominant but, rather, that different approaches should be
chosen for data sets with different 7" and N dimensions and different degrees
of parameter heterogeneity. A broad reading of the literature does suggest,
however, that forecast combination and Bayesian methods can be used to
significantly reduce the likelihood of producing poor forecasts for individual
variables. In contrast, while they may perform well for specific data sets,
individual forecasts and pooled forecasts can produce poor forecasts for data
sets that do not satisfy their underlying assumptions.
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