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1 Introduction

Panel data sets on economic and financial variables are widely available at individual, firm, industry,

regional, and country granularities and have been extensively used for estimation and inference.

Yet, panel estimation methods have had a comparatively lower impact on common practices in

economic forecasting, which remain dominated by unit-specific forecasting models or low-dimensional

multivariate models such as vector autoregressions (Hsiao, 2022). The relative shortage of panel

applications in the economic forecasting literature is, in part, a result of the absence of a deeper

understanding of the determinants of forecasting performance for different panel estimation methods

and the absence of guidelines on which methods work well in different settings.

In this paper, we examine existing approaches and develop novel forecast combination meth-

ods for panel data with possibly correlated heterogeneous parameters. We conduct a systematic

comparison of their predictive accuracy in settings with different cross-sectional (N) and time (T )

dimensions and varying degrees of parameter heterogeneity, whether correlated or not. Our analysis

provides a deeper understanding of the determinants of the performance of these methods across a

variety of settings chosen for their relevance to economic forecasting problems. This includes the

important choice of whether to use pooled versus individual estimates, or perhaps a combination of

the two approaches, with a focus on forecasting rather than parameter estimation and inference.

We begin by exploring analytically the bias-variance trade-off between individual, fixed effects

(FE), and pooled estimation for forecasting. Our analysis is conducted in a general setting that allows

for weakly exogenous regressors and correlated heterogeneity, consistent with the type of dynamic

panel models commonly used in empirical applications. We show how such effects contribute to the

mean squared forecast error (MSFE) of forecasts based on individual, FE, and pooled estimates.

We next examine forecast combination methods. Estimation errors are well-known to lead to

imprecisely estimated combination weights for data with a small time-series dimension. Our main

combination scheme assumes homogeneous weights across individual variables. This allows us to

use cross-sectional information to reduce the effect of estimation error on the combination weights

compared to the conventional combination scheme that lets the weights be individual-specific, which

we also consider. To handle cases where the pooling estimator imposes too much homogeneity, we

also consider combinations based on forecasts from the individual-specific and fixed effect estimators.
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Our theoretical analysis of the individual and pooled estimation schemes focuses on the case with

finite T and N → ∞ and does not require that
√
N/T → 0 as N and T → ∞, jointly, which is often

assumed in the literature. The estimation of the combination weights, however, requires T → ∞,

but at a much slower rate compared to N .

Finally, we consider forecasts based on the empirical Bayesian (EB) approach of Hsiao et al. (1999).

These are related to forecast combination and we show for the empirical Bayes estimator that it can

be thought of as a weighted average of an estimator that allows for full heterogeneity and a pooled

mean group estimator. The empirical Bayes scheme assigns greater weight to the pooled estimator,

the lower the estimated degree of parameter heterogeneity and so adapts to the degree of parameter

heterogeneity characterizing a given data set.1

We evaluate the predictive accuracy of these alternative panel forecasting methods through Monte

Carlo simulations. The simulations explore the importance to forecasting performance of the degree

of parameter heterogeneity, how correlated it is, whether it affects intercepts or slopes, the value of

the regressors in the forecast period, and dimensions of N and T . In the scenario with homogeneous

parameters, forecasts based on pooled estimates are most accurate. Forecasts based on fixed or

random effect estimates perform well, relative to other methods, when parameter heterogeneity is

confined to the intercepts and does not affect slopes. Outside these cases, empirical Bayes and

forecast combinations produce the most accurate forecasts and are better able to handle parameter

heterogeneity, whether correlated or not, while being more robust in cases with a small T than the

individual-specific approach.

Next, we consider two empirical applications selected to represent varying degrees of hetero-

geneity and predictive power of the underlying forecasting models. Our first application considers

predictability of house prices across 362 US metropolitan statistical areas (MSAs). In this applica-

tion, individual-specific forecasts perform quite poorly, producing the highest MSFE values among

all methods for more than 50% of the MSAs. Forecasts based on pooled estimates perform notably

better and, across all forecasts, reduce the average MSFE value by 8% relative to the forecasts based

on individual estimates, though this gets reversed if the regressor set is close to the sample average.

Empirical Bayes and forecast combinations work even better in this application, beating forecasts

1In the Online Supplement we also report results based on the hierarchical Bayesian approach of Lindley and Smith
(1972), Lee and Griffith (1979), and Maddala et al. (1997).
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based on individual estimates for over 90% of MSAs while almost never generating the least accurate

forecasts for individual series.

Our second application considers forecasts for a panel containing 187 subcategories of CPI infla-

tion. In this application, forecasts based on individual estimates generate the highest MSFE-values

for 44% of the series. Forecasts based on pooled estimates produce the highest MSFE-values for

40% of the individual series but, conversely, generate the lowest MSFE-values for 20% of the series.

Combination forecasts produce lower MSFE values for 73-97% of the individual CPI series than the

individual forecasts while almost never generating the largest MSFE value. Even better inflation

forecasts are produced by the empirical Bayes method which is more accurate (in the MSFE sense)

than the individual forecasts for 98% of the series and generates the lowest MSFE values for 39% of

the individual variables while never generating the largest MSFE value.

Overall, forecasts that use only the information on a given unit tend to have loss distributions

with wide dispersion across units. Their associated forecasts are therefore sometimes the best but

far more often the worst, and their distribution of MSFE performance is often shifted to the right,

implying larger losses on average than for other methods. Forecasts based on pooling, random

effects, or fixed effects estimation tend to perform better, on average, than the individual forecasts

whose accuracy they beat for the majority of series. However, relative to the individual-specific

forecasts, these approaches also tend to have a right-skewed MSFE distribution, suggesting a high

risk of poor forecasting performance for individual series whose model parameters are very different

from the average. Combinations and Empirical Bayes forecasts have narrower MSFE distributions

across units, often shifted to the left as they are centered around a smaller average loss, and rarely

produce the largest squared forecast error among all methods we consider.

Related literature: The review articles by Baltagi (2008, 2013) consider the forecasting per-

formance of the best linear unbiased predictor (BLUP) of Goldberger (1962) in models with either

fixed effects or random effects. The BLUP estimator gives rise to a generalized least squares (GLS)

predictor which Baltagi compares to models that allow for autoregressive moving average (ARMA)

dynamics in innovations as well as models with spatial dependencies in the errors. Trapani and

Urga (2009) use Monte Carlo simulations to assess the forecasting performance of pooled, individ-

ual, and shrinkage estimators and find that parameter heterogeneity is a key determinant of the

accuracy of different forecasts. Brückner and Siliverstovs (2006) consider a similar group of methods
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to forecast migration data and find that fixed effects and shrinkage estimators perform best. See

Pick and Timmermann (2024) for a review of the literature.

Wang et al. (2019) also propose forecast combination methods. However, their analysis does not

allow for correlation of regressors and parameters or dynamics in the model. Additionally, their

combination weights are determined from in-sample test statistics rather than the expected out-of-

sample performance that we propose. In this sense, our approach is closer to the forecast based test

for a structural break of Pesaran et al. (2013) and Boot and Pick (2020), where the target is also

significant improvements in forecast accuracy rather than a significant change in parameters.

Liu, Moon and Schorfheide (2020) study forecasting for dynamic panel data models with a short

time-series dimension. Though T exceeds the number of parameters that have to be estimated

for each series, such estimates are typically very noisy and not consistent under large N , fixed

T asymptotics. To handle estimation noise, they adopt a nonparametric Bayesian approach that

shrinks the heterogeneous parameters towards local patterns in the distribution. This is closely

related to the idea of using forecast combinations to reduce the effect on the forecasts of noisy

estimates of individual-specific parameters.

Outline: The rest of the paper is organized as follows. Section 2 introduces the model setup and

our assumptions, while Section 3 derives analytical results on the predictive accuracy of individual,

pooled, and FE forecasting schemes. Section 4 introduces our forecast combination schemes. Section

5 describes the empirical Bayes estimator. Section 6 presents Monte Carlo experiments, Section

7 reports our empirical applications, and Section 8 concludes. Technical details are provided in

appendices at the end of the paper and in an online supplement.

2 Setup and assumptions

We begin by describing the panel regression setup and assumptions used in our analysis.

2.1 Panel regression model

Our analysis considers the following linear panel regression model:

yit = αi + β′
ixit + εit = θ′

iwit + εit, εit ∼ (0, σ2i ), (1)
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where i = 1, 2, . . . , N refers to the individual units and t = 1, 2, . . . , T refers to the time period, yit

is the outcome of unit i at time t, xit is a k× 1 vector of regressors—or predictors—used to forecast

yit (including, possibly, factors), βi is the associated vector of regression coefficients, and εit is the

disturbance of unit i in period t. The second equality in (1) introduces the notations θi = (αi,β
′
i)
′

and wit = (1,x′
it)

′ which have dimensions K × 1, with K = k + 1. For simplicity, we use the time

subscript t for xit and wit, but it is important to emphasize that this refers to the predicted time

for the outcome variable, yit. For a forecast horizon of h periods, all variables in xit must therefore

be known at time t − h. Our notation avoids explicitly referring to h everywhere, but it should be

recalled throughout the analysis that xit includes suitably lagged predictors. We will focus on the

case of h = 1 but extensions to larger h are straightforward.

Notations: Stacking the time series of outcomes, regressors and disturbances, define yi =

(yi1, yi2, . . . , yiT )
′, Xi = (x′

i1,x
′
i2, . . . ,x

′
iT )

′, W i = (τT ,Xi), where τT is a T × 1 vector of ones,

and εi = (εi1, εi2, . . . , εiT )
′. Further, let y = (y′

1,y
′
2, . . . ,y

′
N )′, X = (X ′

1,X
′
2, . . . ,X

′
N)′, W =

(W ′
1,W

′
2, . . . ,W

′
N )′, and ε = (ε′1, ε

′
2, . . . , ε

′
N )′. Generic positive finite constants are denoted by C

when large and c when small. They can take different values at different instances. λmax (A) and

λmin (A) denote the maximum and minimum eigenvalues of matrix A. A ≻ 0 and A ⪰ 0 denote

that A is a positive definite and a non-negative definite matrix, respectively. ∥A∥ = λ
1/2
max(A

′A)

and ∥A∥1 denote the spectral and column norms of matrix A, respectively. ∥x∥p = [E (∥x∥p)]1/p. If

{fn}∞n=1 is any real sequence and {gn}∞n=1 is a sequence of positive real numbers, then fn = O(gn),

if there exists a C such that |fn| /gn ≤ C for all n and fn = o(gn) if fn/gn → 0 as n→ ∞. Similarly,

fn = Op(gn) if fn/gn is stochastically bounded and fn = op(gn) if fn/gn
p→ 0. The operator

p→

denotes convergence in probability, and
d→ denotes convergence in distribution.

2.2 Assumptions

Our theoretical analysis builds on a set of standard assumptions about the underlying data generating

process.

Assumption 1. εit is serially independent with mean zero, a fixed variance σ2i (0 < c < σ2i < C <

∞), and with supi,t E |εit|4 < C <∞.

Assumption 2. {εit} for i = 1, 2, . . . , N are martingale difference processes with respect to the
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filtration, Iit = (wit,wi,t−1, . . .), so that:

E (εit |wis ) = 0, for t ≥ s, for t = 1, 2, . . . , T, T + 1.

Assumption 3. (a) {wit} for i = 1, 2, . . . , N are covariance stationary with E(witw
′
it) = Qi,

supi,t={1,2,...,T} E ∥wit∥4 < C, supi,T ∥wi,T+1∥ < C, and

sup
i
λmax (Qi ) < C <∞, and sup

i
λmax

(
Q−1

i

)
< C <∞. (2)

(b) The sample covariance matrices QiT = T−1W ′
iW i = T−1

∑T
t=1witw

′
it, for i = 1, 2, . . . , N,

satisfy the conditions supi λmax (QiT ) < C <∞, and supi λmax

(
Q−1

iT

)
< C <∞.

Assumption 4. There exists a fixed T0 such that for all T > T0

sup
i

E
∥∥∥T−1/2W ′

iεi

∥∥∥4 < C <∞, (3)

sup
i

E
[
λ4max (QiT )

]
< C <∞, and sup

i
E
[
λ4max

(
Q−1

iT

)]
< C <∞. (4)

Under Assumption 1 the optimal forecast of yi,T+1, in a mean squared error sense, is given by

E (yi,T+1 |wi,T+1,W i ) = θ′
iwi.T+1. Note that wi.T+1 is known at time T , and is bounded under

Assumption 3. Assumption 2 allows the regressors to be weakly exogenous with respect to εi and

therefore permits the inclusion of lagged dependent variables such as yi,T in wi,T+1. Part (a) of

Assumption 3 is standard in the forecasting literature and requires the regressors to be stationary.

Part (b) is an identification assumption that allows estimation of individual slope coefficients, θi, by

least squares. Assumption 4 is required when we compare average MSFEs based on individual and

pooled estimators. It provides sufficient conditions under which (see Lemma A.1)

E
∥∥∥√T (θ̂i − θi

)∥∥∥2 = E
∥∥∥Q−1

iT

(
T−1/2W ′

iεi

)∥∥∥2 < C <∞, (5)

where θ̂i = (W ′
iW i)

−1
W ′

iyi is the least squares estimator of θi. The moment conditions in As-

sumption 4 can be relaxed when wit is strictly exogenous.

Under weakly exogenous regressors the least squares estimator has a small T bias, and E
(
θ̂i − θi

)
=

O
(
T−1

)
. Under strictly exogenous regressors, in contrast, E

(
θ̂i − θi

)
= 0. We also note that, un-
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der Assumption 3 and 4, ∥QiT −Qi∥ = Op(T
−1/2), and

∥∥Q−1
iT −Q−1

i

∥∥ = Op(T
−1/2). These results,

which hold for each i, are used in the implementation of our combination forecasts below. For proof

of consistency of the weights in the combined forecasts discussed in Section 4 below, we need the

stronger conditions

sup
i

∥QiT −Qi∥ = Op

(
ln(N)√

T

)
, and sup

i

∥∥Q−1
iT −Q−1

i

∥∥ = Op

(
ln(N)√

T

)
, (6)

still allowing N to rise much faster than T .2

Finally, let git = witεit, and note that T−1/2W ′
iεi = T−1/2

∑T
t=1 git. Also under Assumption 2

git is a martingale difference process with respect to Iit = (wit,wi,t−1, . . .), and we have E (git) = 0,

Var

(
T−1/2

T∑
t=1

git

)
= T−1

T∑
t=1

E
(
gitg

′
it

)
= T−1E

(
W ′

iεiε
′
iW i

)
= T−1

T∑
t=1

σ2i E
(
witw

′
it

)
.

Further, under Assumption 3, E (witw
′
it) = Qi, and it follows that

E
(
T−1W ′

iεiε
′
iW i

)
= σ2iQi. (7)

We next introduce assumptions that are required primarily for establishing the properties of

pooled and fixed effects predictors.

Assumption 5. (a) θi = θ + ηi with ∥θ∥ < C, E ∥ηi∥ < C, E (ηi) = 0, E (ηiη
′
i) = Ωη, and

∥Ωη∥ < C. (b) Let qit = witw
′
itηi, then E (qit) = qi (fixed), supi ∥qi∥ < C, supi,t E ∥qit∥

2 < C, and

supi E
∥∥∥w′

i,T+1ηi

∥∥∥2 < C.

Assumption 6. ηi is distributed independently of εi, for all i.

Assumption 7. ξ̄NT = N−1
∑N

i=1 ξiT = Op

(
N−1/2T−1/2

)
, where ξiT = T−1W ′

iεi = T−1
∑T

t=1witεit =

Op(T
−1/2).

Assumption 8. There exists a fixed T0 such that for all T > T0 and N = 1, 2, . . . , the pooled

2As noted by Fan et al. (2015, Section 3.1), this stronger condition is typically satisfied for strictly stationary data
that satisfy strong mixing conditions.
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covariance matrices Q̄NT and Q̄N , defined in terms of QiT = T−1W ′
iW i and Qi = E(QiT ),

Q̄NT = N−1
N∑
i=1

QiT , and Q̄N = E
(
Q̄NT

)
= N−1

N∑
i=1

Qi, (8)

are positive definite,
∥∥∥Q̄−1

N

∥∥∥ < C, and

sup
N,T

E
[
λ2max

(
Q̄NT

)]
< C <∞, and sup

N,T
E
[
λ2max

(
Q̄

−1
NT

)]
< C <∞.

Assumption 9. (εi,W i,ηi) are distributed independently over i.

For pooled estimation of θ, the conditions on QiT can be relaxed and it is sufficient that Q̄NT

is positive definite, and supN,T E
∥∥Q−1

NT

∥∥2 < C. Assumptions 5 and 6 identify the population mean

of θi denoted by θ, but allow for correlated heterogeneity.3 The degree of parameter heterogeneity

is measured by the norm of Ωη, and the extent to which heterogeneity is correlated is measured by

the norm of qi.
4

Assumptions 5–8 are not required for forecasts based on the individual estimates and the associ-

ated MSFE. Assumption 9 of cross-sectional independence for εit (or wit) is not needed to establish

results on the MSFE of individual forecasts. However, we do require some degree of uncorrelatedness

over i when the objective is to compute the MSFE averaged across all N units under consideration or

over a sub-group of the units. In particular, to ensure that the cross-sectional average MSFE tends

to a non-random limit, the units under consideration must satisfy the law of large numbers. To this

end, we need the units to be cross-sectionally weakly correlated, possibly conditional on known (or

estimated) common factors. The situation is different when we consider pooled or Bayesian forecasts.

Optimality of these forecasts does depend on the assumption of cross-sectional independence, or at

least some form of weak cross-sectional dependence. A comprehensive analysis of the implications

of cross-sectional dependence for forecast combinations and comparisons of predictive accuracy are

beyond the scope of the present paper, however.5

We measure the degree of correlated heterogeneity for unit i at time t by qi = E(witw
′
itηi) and,

3We simplify the notations and use θ, rather than θ0, to denote the population mean which is technically more
appropriate.

4Under Assumption 2, E (ξiT ) = T−1 ∑T
t=1 E (witεit) = 0, and E (ξNT ) = 0. Note that εit and wit are uncorrelated

but not independently distributed. Under Assumption 3,
∥∥Q̄NT

∥∥ ≤ supi ∥QiT ∥ < C, and
∥∥Q̄N

∥∥ ≤ supi ∥Qi∥ < C.
5Cross-sectional dependence in forecast errors can be exploited by using interactive time effects (latent factors) or

spatial (network) effects, see, e.g., Chudik et al. 2016.
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on average, by

q̄NT = N−1T−1
N∑
i=1

W ′
iW iηi = N−1T−1

N∑
i=1

T∑
t=1

witw
′
itηi. (9)

Taking expectations,

E (q̄NT ) = q̄N = N−1
N∑
i=1

qi. (10)

Assumptions 5 and 6 accommodate correlated heterogeneity and allow for non-zero values of E (W ′
iW iηi).

In the context of fixed effects models, the intercepts αi in (1) are allowed to have non-zero cor-

relation with the regressors, but optimality of forecasts based on pooled estimates of β requires

Assumption 6 and the condition limn→∞ n−1
∑n

i=1 E
(
X ′

iMTXiηiβ

)
= 0, where ηiβ = βi − β,

MT = IT − τT (τ ′
TτT )

−1 τ ′
T , τT is a T × 1 vector of ones, and IT is a T × T identity matrix.6

3 Theoretical results on forecasting performance

We next use the setup and assumptions from Section 2 to establish theoretical results on the forecast-

ing performance of different modeling approaches. Section 3.1 discusses forecasts based on individual

and pooled estimation and, building on this, Section 3.2 covers fixed effects forecasts.

Note that our theoretical framework can be equally applied to forecasts across groups instead of

individuals, when there are a priori known groups such as industries or states within a given country.

Pooled regressions can be applied to any given, a priori known group, so long as the number of units

within the group is sufficiently large and the cross-sectional dependence of units within the group is

sufficiently weak. Failure of the latter assumption implies that there are missing pervasive (strong)

common factors that must also be taken into account but lies beyond the scope of the present paper.

3.1 Forecasts based on individual and pooled estimation

We are interested in forecasting yi,T+1 conditional on the information known at time T , which

we denote by wi,T+1 to clarify the correspondence to yi,T+1. Without loss of generality, given the

6See Pesaran and Yang (2024b). Note that E
(
X ′

iMTXiηiβ

)
= 0 is sufficient but not necessary for the validity of

fixed effects estimation. This condition is not met if xit includes lagged values of yit, even if T → ∞.
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conditional nature of the forecasting exercise, we assume that supi,T ∥wi,T+1∥ < C.7 Forecasts based

on individual estimators take the form

ŷi,T+1 = θ̂
′
iwi,T+1, i = 1, 2, . . . , N, (11)

where θ̂i = (W ′
iW i)

−1W ′
iyi, is the least squares estimator of θi. Similarly, forecasts based on the

pooled estimator are given by

ỹi,T+1 = θ̃
′
wi,T+1, i = 1, 2, . . . , N, (12)

where θ̃ = (W ′W )−1W ′y. Using (8), (9) and the definition of ξ̄NT in Assumption 7,

θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT . (13)

Forecast errors from these schemes take the form

êi,T+1 = yiT+1 − ŷi,T+1 = εi,T+1 − (θ̂i − θi)
′wi,T+1, (14)

ẽi,T+1 = yiT+1 − ỹi,T+1 = εi,T+1 − (θ̃ − θi)
′wi,T+1. (15)

Forecasts based on individual estimation

Noting that (θ̂i − θi)
′wi,T+1 = ε′iW i(W

′
iW i)

−1wi,T+1, it is easily seen that the forecasts based on

the individual estimates generate the following average MSFE:

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1SNT − 2RNT , (16)

where SNT = N−1
∑N

i=1 siT , RNT = N−1
∑N

i=1 riT , with elements

riT =
(
ε′iW i(W

′
iW i)

−1wi,T+1

)
εi,T+1, (17)

siT = w′
i,T+1Q

−1
iT

(
T−1W ′

iεiε
′
iW i

)
Q−1

iT wi,T+1. (18)

7See part (a) of Assumption 3.
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Under Assumptions 1 and 3, E (riT ) = 0 and supi,T E |riT | < C, and under cross-sectional indepen-

dence (Assumption 9) we have RNT = Op(N
−1/2). Similarly, supi,T E |siT | < C,

E (siT ) = E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
,

SNT = E(SNT ) + Op(N
−1/2), and we obtain the results summarized in the following proposition

for the average MSFE of the forecasts based on the individual estimates (for a detailed proof see

Section A.2.1 of the Appendix):

Proposition 1. Suppose that Assumptions 1–4 and 9 hold. Then, for a fixed T0 such that T > T0,

the average MSFE resulting from individual-specific estimation of the parameters, given by (16), has

the following representation

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1hNT +Op(N
−1/2), (19)

where

hNT = N−1
N∑
i=1

E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
, (20)

QiT = T−1W ′
iW i, hNT > 0, and hNT = O(1).

(b) If W i is strictly exogenous, hNT simplifies to hNT = N−1
∑N

i=1 σ
2
i E
(
w′

i,T+1Q
−1
iT wi,T+1

)
.

The hNT term captures the cost associated with the error in estimation of θ̂i. For typical

panel data sets, T is not large and parameter estimation uncertainty captured by the O
(
T−1

)
term

T−1hNT in (19) can therefore be important. Parameter heterogeneity, in contrast, does not affect the

accuracy of the forecast in (19). The magnitude of hNT plays an important role in the comparisons

of forecasts based on individual and pooled estimates and depends on how far the predictors are

from their mean. For example, when wit = (1, xit)
′ and xit is strictly exogenous,

hNT = σ̄2N +N−1
N∑
i=1

σ2i E

[
(xi,T+1 − x̄iT )

2

s2iT

]
,

where σ̄2N = N−1
∑N

i=1 σ
2
i , s

2
iT = T−1

∑T
t=1(xit − x̄iT )

2, and x̄iT = T−1
∑T

t=1 xit. Hence, hNT is

minimized when xi,T+1 = x̄iT , for all i. When xi,T+1 ̸= x̄iT for most i, T must be sufficiently large
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such that supiE
[
(xi,T+1 − x̄iT )

2 /s2iT

]
< C.

Forecasts based on pooled estimation

While the forecast accuracy results for the individual regressions do not depend on the degree of

parameter heterogeneity, whether correlated or not, the degree of correlated heterogeneity does

matter for consistency of the pooled estimator. Using (13) in (15) we can express the squared

forecast error when pooled estimates are used as follows:

ẽ2i,T+1 = ε2i,T+1 +w′
i,T+1di,NTd

′
i,NTwi,T+1 − 2d′

i,NTwi,T+1εi,T+1,

where di,NT = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT , Q̄NT and q̄NT are defined by (8) and (9), and ξ̄NT is

defined under Assumption 7. After some algebra, and averaging over i, we have

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 (21)

+S̃N,T+1 + 2R̃N,T+1,

where S̃N,T+1, and R̃N,T+1 are defined by equations (A.10) and (A.11) in Section A.2.2 of the

Appendix. It can be shown that R̃N,T+1 = Op(N
−1/2), and S̃N,T+1 = −q̄′NQ̄

−1
N q̄N + Op

(
N−1/2

)
.

The limiting properties of the average MSFE based on pooled estimates are summarized in the

following proposition:

Proposition 2. (a) Under Assumptions 1–9, the MSFE for the forecasts based on pooled estimation

of the parameters, given by (21), is

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +∆NT +Op(N
−1/2), (22)

where

∆NT = N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄′NQ̄

−1
N q̄N . (23)

(b) Parameter heterogeneity (whether correlated or uncorrelated) increases the MSFE of the forecasts

based on the pooled estimator, namely ∆NT > 0.

12



Note that the impact on the MSFE from neglected heterogeneity, ∆NT , does not vanish even if

both N and T → ∞, which is similar to the finding by Pesaran and Smith (1995) for heterogeneous

dynamic panels since heterogeneity is always correlated in dynamic panels.8

A comparison of forecasts based on individual and pooled estimates

Next, we consider the difference in the average MSFE performance of the forecasts based on the

pooled versus individual parameter estimates. Proposition 1 shows that the MSFE from the forecasts

based on the individual estimates will be affected by an estimation error term of the form

hNT = N−1
N∑
i=1

E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
> 0.

While the forecasts from the pooled estimates are more robust to estimation errors, they are in turn

affected by correlated and uncorrelated heterogeneity as captured by the term

∆NT = N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄′NQ̄

−1
N q̄N .

We compare the difference in the average MSFE of the forecasts from the pooled versus individual

estimates as a ratio measured relative to the MSFE of the forecasts from the individual estimates:

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

=
∆NT − T−1hNT +Op(N

−1/2)

N−1
∑N

i=1 ε
2
i,T+1 + T−1hNT +Op(N−1/2)

.

Hence, there exists a T0 such that, for a fixed T > T0, and as N → ∞

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆− T−1hT
σ̄2 + T−1hT

, (24)

where hT = limN→∞ hNT ≥ 0, ∆ = limN→∞∆N ≥ 0, and σ̄2 = limN→∞N−1
∑N

i=1 σ
2
i > 0. It

follows that when T is fixed and N is large, the ranking of the two forecasting schemes will depend

on the sign and magnitude of ∆− T−1hT .
9

8This latter property is illustrated by a simple panel AR(1) model with heterogeneous AR coefficients in Section
A.4 of the Appendix. See also Pesaran and Yang (2024a) where estimation of such models with short T panels is
considered.

9In comparing ∆T with T−1hT , it is also important to bear in mind that hT is well defined if moments of θ̂i (at
least up to second order) exist (see the moment condition (5)). This in turn requires that T > T0 for some finite T0.
The value of T0 depends on the nature of the (wit, εit) process and its distributional properties.

13



For large values of T , however, the individual forecasts generate the lowest MSFE values. Specif-

ically, for a fixed N and as T → ∞

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆N

σ̄2
+Op(N

−1/2).

Similarly, when both N and T → ∞ (in any order)

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆/σ̄2 ≥ 0,

where ∆ = limT→∞(∆T ). Therefore, vanishing estimation uncertainty implied by large T means

that, on average, individual forecasts are at least as precise as pooled forecasts irrespective of N .

3.2 Forecasts based on fixed effects estimation

The comparison of forecasts based on individual or pooled estimates can be extended to intermediate

cases where a sub-set of the parameters are allowed to vary across units. A prominent example is

the FE forecast

ŷFEi,T+1 = α̂i,FE + β̂
′
FExi,T+1, (25)

where α̂i,FE = τ ′
T (yi− β̂

′
FEXi)/T and β̂FE =

(∑N
i=1X

′
iMTXi

)−1∑N
i=1X

′
iMTyi. The associated

FE forecast error is given by

êFEi,T+1 = ¯̄εi,T+1 − (β̂FE − βi)
′ ¯̄xi,T+1, (26)

where ¯̄εi,T+1 = εi,T+1 − ε̄iT , ¯̄xi,T+1 = xi,T+1 − x̄iT , ε̄iT = T−1
∑T

t=1 εit, and x̄iT = T−1
∑T

t=1 xit.

Section S.5 in the Online Supplement provides details of the derivation of the MSFE under fixed

effects estimation:

N−1
N∑
i=1

(
êFEi,T+1

)2
= N−1

N∑
i=1

¯̄ε2i,T+1 +∆FE
NT − 2cFENT +Op(N

−1/2), (27)
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where

∆FE
NT = N−1

N∑
i=1

E(¯̄x′
i,T+1ηi,βη

′
i,β

¯̄xi,T+1)− q̄′N,βQ̄
−1
N,β q̄N,β, (28)

ηi,β = βi − β, ξ̄NT,β = N−1
∑N

i=1 T
−1X ′

iMTεi, Q̄NT,β = N−1
∑N

i=1 T
−1X ′

iMTXi, q̄NT,β =

N−1
∑N

i=1

(
T−1X ′

iMTXi

)
ηi,β and

cFENT = −N−1
N∑
i=1

E
(
η′
i,β

¯̄xi,T+1ε̄iT
)
+ q̄′N,βQ̄

−1
N,β

[
N−1

N∑
i=1

E (x̄iT ε̄iT )

]
. (29)

cFENT tends to zero for T sufficiently large or if xit is strictly exogenous.

Similar to the case of the individual and pooled forecasts, for T finite and N large, the ranking

of the individual and FE forecasts will depend on the relative magnitudes estimation error and

parameter heterogeneity. Precise expressions can be found in the Online Supplement. For T → ∞

the individual forecasts will be more precise than the FE forecasts.

4 Forecast combinations

We next consider approaches that combine the forecasts from Section 3 to minimize the MSFE.

4.1 Combinations of individual and pooled forecasts

Given the MSFE trade-off associated with the forecasts in (11) and (12), combining the forecasts

based on the individual and pooled estimates, ŷi,T+1 and ỹi,T+1, may be desirable. As noted in

the literature (e.g., Timmermann, 2006), forecast combinations tend to perform particularly well,

relative to the underlying forecasts, if the forecast errors are weakly correlated and have MSFE

values of a similar magnitude. Correlations between forecast errors based on the individual and

pooled estimation schemes tend to be lower for (i) greater differences in the estimates of θi resulting

from larger estimation errors (small T ); (ii) greater heterogeneity (large ∥Ωη∥), and (iii) greater bias

of the pooled estimator due to correlated heterogeneity.

If the level of parameter heterogeneity is either very large or very small, one of the individual or

pooled estimation approaches will be dominant, reducing potential gains from forecast combination.

Similarly, if T is very small butN is large and there is little parameter heterogeneity, we would expect
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pooled estimation to dominate individual estimation by a sufficiently large margin that forecast

combination offers small, if any, gains. Conversely, if T is very large, forecasts using individual

estimates will dominate forecasts using pooled estimates by a sufficient margin that renders forecast

combination less attractive. Building on these observations, we combine the two forecasts ŷi,T+1 and

ỹi,T+1 using common weights, ω, to obtain10

y∗i,T+1(ω) = ωŷi,T+1 + (1− ω)ỹi,T+1, (30)

with associated forecast error e∗i,T+1(ω) = ωêi,T+1+(1−ω)ẽi,T+1. The average MSFE of the combined

forecast is given by

N−1
N∑
i=1

e∗2i,T+1(ω) = ω2

(
N−1

N∑
i=1

ê2i,T+1

)
+ (1− ω)2

(
N−1

N∑
i=1

ẽ2i,T+1

)

+2ω(1− ω)

(
N−1

N∑
i=1

êi,T+1ẽi,T+1

)
.

The value of ω that minimizes the average MSFE is therefore given by

ω∗
NT =

N−1
∑N

i=1 ẽ
2
i,T+1 −

(
N−1

∑N
i=1 êi,T+1ẽi,T+1

)
(
N−1

∑N
i=1 ê

2
i,T+1

)
+
(
N−1

∑N
i=1 ẽ

2
i,T+1

)
− 2

(
N−1

∑N
i=1 êi,T+1ẽi,T+1

) . (31)

Expressions for N−1
∑N

i=1 ê
2
i,T+1 and N−1

∑N
i=1 ẽ

2
i,T+1 are given by (19) and (22), respectively. We

obtain a similar expression for N−1
∑N

i=1 êi,T+1ẽi,T+1, with N−1
∑N

i=1 ε
2
i,T+1 cancelling out from

ω∗
NT . The result is summarized in the following proposition (proven in Appendix Section A.2.3):

Proposition 3. (a) Under Assumptions 1–9, and for a given value of wi,T+1, the optimal combi-

nation weight that minimizes the MSFE of the forecast combination in (30) is given by

ω∗
NT =

∆NT − T−1ψNT

∆NT + T−1hNT − 2T−1ψNT
+Op(N

−1/2), (32)

10We focus here on a simple constant-coefficient linear combination scheme. Lahiri et al. (2017) discuss a broader
range of combination methods and Elliott (2017) provides an analysis of the effect on the combination weights and
forecasting performance from having a large common component in the forecast errors.
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where

hNT = N−1
N∑
i=1

E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
> 0, (33)

∆NT = N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄′NQ̄

−1
N q̄N > 0, (34)

and

ψNT = TN−1
N∑
i=1

E
[
ε′iW i(W

′
iW i)

−1wi,T+1w
′
i,T+1

]
Q̄

−1
N q̄N (35)

− TN−1
N∑
i=1

E
[
ε′iW i(W

′
iW i)

−1wi,T+1w
′
i,T+1ηi

]
.

(b) Under strict exogeneity, irrespective of whether heterogeneity is correlated, we have ψNT = 0,

hNT = N−1
∑N

i=1 σ
2
i E
(
w′

i,T+1Q
−1
iT wi,T+1

)
, and ∆NT = N−1

∑N
i=1 E

(
w′

i,T+1Ωηwi,T+1

)
.

For small to moderate values of T and large N , we expect ω∗
NT < 1, with a non-zero weight

placed on the forecasts based on the pooled estimate.

Forecast combinations with individual weights

Pesaran et al. (2022) show that, under strict exogeneity of the regressors and uncorrelated hetero-

geneity, optimal weights can be obtained that are specific to the individual unit. The combination

of individual and pooled forecast is then

y∗i,T+1 = ωiŷi,T+1 + (1− ωi)ỹi,T+1.

where the optimal value of ωi is given by

ω∗
i =

w′
i,T+1Ωηwi,T+1

w′
i,T+1(T

−1σ2iQ
−1
iT +Ωη)wi,T+1

(36)

The weights again depend on the variances and covariances of the underlying forecast errors. Related

to this, Giacomini et al. (2023) develop a random effects approach for linear panels that similarly

combines univariate and pooled forecasts in a way that minimizes minimax-regret and MSFE.
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4.2 Combining individual and fixed effect forecasts

Combination weights can also be determined for the case where the pooled forecast is replaced with

the FE forecasts. In this case, the combined forecast is given by

y∗i,T+1(ωFE) = ωFEŷi,T+1 + (1− ωFE)ŷi,T+1,FE, (37)

yielding the optimal pooled weight

ω∗
FE,NT =

N−1
∑N

i=1

(
êFEi,T+1

)2
−
(
N−1

∑N
i=1 ê

FE
i,T+1êi,T+1

)
(
N−1

∑N
i=1 ê

2
i,T+1

)
+N−1

∑N
i=1

(
êFEi,T+1

)2
− 2

(
N−1

∑N
i=1 ê

FE
i,T+1êi,T+1

) . (38)

The expressions for N−1
∑N

i=1

(
êFEi,T+1

)2
and N−1

∑N
i=1 ê

2
i,T+1 are given by (27) and (19), respec-

tively, and the expression for N−1
∑N

i=1 ê
FE
i,T+1êi,T+1 can be similarly obtained. In this case, the

shared term
∑N

i=1(εi,T+1 − ε̄iT )
2/N cancels out and we have the result summarized in the following

proposition with proofs provided in Section A.2.4 of the Appendix.

Proposition 4. (a) Under Assumptions 1–9, the optimal combination weight that minimizes the

MSFE of the forecast combination in (37) is given by

ω∗
FE,NT =

∆FE
NT − T−1ψFE

NT −
(
cFENT − cNT,β

)
∆FE

NT + T−1hNT,β − 2T−1ψFE
NT

+Op(N
−1/2), (39)

where ∆FE
NT and cFENT are defined in (28) and (29), respectively,

hNT,β = N−1
N∑
i=1

E

[
¯̄x′
i,T+1Q

−1
iT,β

(
X ′

iMTεiε
′
iMTXi

T

)
Q−1

iT,β
¯̄xi,T+1

]
,

ψFE
NT = TN−1

N∑
i=1

E

[(
β̂FE − βi

)′
¯̄xi,T+1 ¯̄x

′
i,T+1

]
Q̄

−1
N,β q̄N,β

−TN−1
N∑
i=1

E

[(
β̂FE − βi

)′
¯̄xi,T+1 ¯̄x

′
i,T+1ηi,β

]
,
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and

cNT,β = N−1
N∑
i=1

E
[
¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
.

(b) Under uncorrelated heterogeneity, ψFE
NT = 0, and ∆FE

NT and hNT,β will be affected accordingly.

4.3 Estimation of combination weights

Estimates of the weights for the forecast combination in Proposition 3 require estimates of ∆NT ,

hNT , and ψNT . Under Assumption 9, these terms can be estimated by their sample means with

unknown parameters replaced by their estimates. We summarize the estimators here with details in

Appendix A.3. Using (34) and (33), the estimators of ∆NT and hNT are given by

∆̂NT = N−1
N∑
i=1

w′
i,T+1η̃iη̃

′
iwi,T+1, (40)

where η̃i = θ̃ − θ̂i, and

ĥNT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT Ĥ iTQ

−1
iT wi,T+1, (41)

where Ĥ iT = σ̂2i T
−1
∑T

t=1witw
′
it, σ̂

2
i =

∑T
t=1 ε̂

2
it/(T − K), and ε̂it = yit − θ̂

′
iwit. We show in

Appendix A.3 that

∆̂NT −∆NT = Op

(
N−1/2

)
+Op(T

−1),

ĥNT − hNT = Op(N
−1/2) +Op

(
ln(N)√

T

)
.

In the case of strictly exogenous regressors, ∆̂NT is a consistent estimator of ∆NT for fixed T as

N → ∞.

Consider now ψNT , given by (35), and recall that ψNT = 0 under uncorrelated heterogeneity.

To estimate ψNT under correlated heterogeneity, we first note that the approach of replacing ex-

pectations by sample moments and then estimating εi from the OLS residuals, ε̂i =
(
yi −Wiθ̂i

)
will not work in the case of ψNT , since W′

iε̂i = W′
i

(
yi −Wiθ̂i

)
= 0 for all i. If used in (35), this

results in ψ̂NT = 0, which is not a consistent estimator of ψNT under correlated heterogeneity. To
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overcome this problem, we replace ε′iW i(W
′
iW i)

−1 by
(
θ̂i − θi

)′
and note that ψNT can be written

equivalently as (noting that wi,T+1 for i = 1, 2, . . . , N are given)

ψNT = N−1
N∑
i=1

E

[
T
(
θ̂i − θi

)′]
E
(
wi,T+1w

′
i,T+1

)
Q̄

−1
N q̄N (42)

−N−1
N∑
i=1

E

[
T
(
θ̂i − θi

)′]
E
(
wi,T+1w

′
i,T+1ηi

)
.

We now employ a half-jackknife estimator of θi (Dhaene and Jochmans, 2015, Chudik et al., 2018)

to estimate TE
(
θ̂i − θi

)
, which is the small sample bias of θ̂i in the case of weakly exogenous re-

gressors. The half-jackknife estimator of θi is defined by θ̂i,JK = 2θ̂i − 1
2

(
θ̂ia + θ̂ib

)
, where θ̂ia and

θ̂ib are least squares estimators of θi based on two equal halves of the sample of size Th = T/2 (omit-

ting an observation in the case of uneven T ), namely θ̂ia =
(∑Th

t=1witw
′
it

)−1∑Th
t=1wityit and θ̂ib =(∑T

t=Th+1witw
′
it

)−1∑T
t=Th+1wityit. Then E

[
T
(
θ̂i − θi

)]
can be estimated by T

[
1
2

(
θ̂ia + θ̂ib

)
− θ̂i

]
and ψNT by

ψ̂NT =

[
TN−1

N∑
i=1

[
1

2

(
θ̂ia + θ̂ib

)
− θ̂i

]′
wi,T+1w

′
i,T+1

]
Q̄

−1
NT q̄NT (η̂) (43)

−TN−1
N∑
i=1

[
1

2

(
θ̂ia + θ̂ib

)
− θ̂i

]′
wi,T+1w

′
i,T+1η̂i,

where η̂i = θ̂i − N−1
∑N

i=1 θ̂i, and q̄NT (η̂) = (NT )−1
∑N

i=1W
′
iW iη̂i. Consistency of ψ̂NT as an

estimator of ψNT is established as N,T → ∞, since TE
(
θ̂i,JK − θi

)
= O

(
T−1

)
.11 Thus, to use the

half-jackknife method for models with weakly exogenous regressors we need T large, although it is

not required that
√
T/N tends to zero, as it is in the case of large N and T asymptotics.

The components of the weights in Proposition 4 that combine individual and fixed effects forecasts

can be estimated in a similar fashion, with details provided in Appendix A.3.

4.4 Empirical Bayes Forecasts

Bayesian panel forecasts are becoming increasingly common in empirical applications and constitute

an alternative approach to the frequentist forecasts discussed so far. Due to their resemblance to our

forecast combination schemes and their recent popularity (e.g., Armstrong et al., 2022, and Efron,

11Note that ψ̂NT − ψNT depends on E
[(

θ̂i − θi

)
−

(
1
2

(
θ̂ia + θ̂ib

)
− θ̂i

)]
= E

(
θ̂i,JK − θi

)
.
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2016), we focus on empirical Bayes (EB) methods. The EB forecast uses the estimator of Hsiao et

al. (1999) and takes the form ŷEBi,T+1 = θ̂
′
i,EBwi,T+1, where

θ̂i,EB = (σ̂−2
i W ′

iW i + Ω̂
−1
η )−1(σ̂−2

i W ′
iyi + Ω̂

−1
η

¯̂
θ), (44)

¯̂
θ = N−1

∑N
i=1 θ̂i, σ̂2i = (T −K)−1ε̂′iε̂i, and Ω̂η = 1

N

∑N
i=1(θ̂i− ¯̂

θ)(θ̂i− ¯̂
θ)′, where ε̂i = yi−W iθ̂i,

and θ̂i = (W ′
iW i)

−1
W ′

iyi.
12 θ̂i,EB can also be written as a weighted average of θ̂i, that allows for

full heterogeneity, and the mean group estimator,
¯̂
θ, namely θ̂i,EB = W iT θ̂i + (Ik −W iT )

¯̂
θ, with

the weight matrix W iT given by

W iT =
(
Ik + T−1σ̂2iQ

−1
iT Ω̂

−1
η

)−1
, (45)

recalling that QiT = T−1W ′
iW i is invertible under Assumption 3. The weights on the heteroge-

neous estimates are larger, the greater the degree of heterogeneity, as measured by the norm of Ω̂η,

with θ̂i,EB → θ̂i as
∥∥∥Ω̂η

∥∥∥ → ∞. Also, since σ̂2iQ
−1
iT Ω̂

−1
η is bounded in T , θ̂i,EB converges numer-

ically to θ̂i, as T → ∞. Hence, one would expect the EB estimator to perform well even when T

is relatively small and the degree of heterogeneity is not too large. For large T , EB and individual

forecasts coincide and both methods will work well.

The EB weights do not depend on wi,T+1 and are derived assuming uncorrelated heterogeneity

and strictly exogenous regressors. They have the desirable feature of placing more weights on

individual estimates if they are precisely estimated relative to the degree of parameter heterogeneity

measured by Ω̂η. The individual optimum weights in (36) fall somewhere between the common

optimal weights and the EB weights.13 Like the EB weights, consistent estimation of individual

weights require strict exogeneity and uncorrelated heterogeneity.

The EB weights are comparable to the unit-specific weights given by (36) and the two sets of

weights coincide only when wi,T+1 is an scalar. To see this note that the estimates of the unit

12It is necessary that N > T for Ω̂η to be positive definite.
13While the EB estimator in (44) is fully parametric, other studies pursue a non-parametric approach to the distri-

bution of θ̂i; see, e.g., Brown and Greenshtein (2009) and Gu and Koenker (2017) and, more recently, Liu (2023) and
Liu et al. (2023).
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specific weights can be written as

ω̂∗
iT =

[
1 + σ̂2i T

−1
w′

i,T+1Q
−1
iT wi,T+1

w′
i,T+1Ω̂ηwi,T+1

]−1

, (46)

and reduces to the EB weights only when K = 1 and ω̂∗
iT no longer depend on wi,T+1. But in general

the estimates of the unit-specific weights differ from the EB weights.

An alternative to the EB forecast is a hierarchical Bayesian approach as proposed by Lindley and

Smith (1972). The full Bayesian treatment would require choices of the priors of each component,

including the parameter covariance matrix. In the Online Supplement, we provide Monte Carlo

results that shows that the resulting forecast performance is highly sensitive to the choice of prior.

5 Monte Carlo experiments

We examine the finite-sample performance of the panel forecasting schemes in the context of a dy-

namic heterogeneous panel data model using Monte Carlo experiments.14 We allow for dynamics,

parameter heterogeneity, and correlations between the regressors and coefficients. The forecasting

methods are: (1) individual estimation which serves as the benchmark against which other methods

are compared, (2) pooled estimation, (3) random effects, (4) fixed effects, (5) combination of indi-

vidual and pooled forecasts using the weights in (32), (6) combination of individual and FE forecasts

using the weights in (39), (7) individual forecast combination weights, and (8) EB forecasts.15

Results do not vary greatly along the N dimension, so we focus on the case with N = 100 and

provide results for N = 1000 in the Online Supplement. The T dimension of the panel is more

important, so we consider three different values, T = {20, 50, 100}. The values of the parameters

used in the simulations are reported in Table S.1 in Appendix S.2.

5.1 Data Generating Process

Our DGP augments a panel AR(1) model with an additional regressor,

yit = αi + βiyi,t−1 + γixit + εit, (47)

14Further analytical results for a simple panel AR(1) model are provided in Section A.4 of the Appendix.
15Additional results for equal weighted combinations and oracle weights are in Section S.4 of the Online Supplement.
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where εit = σi(z
2
it − 1)/

√
2 with zit ∼ iidN(0, 1), σ2i ∼ iid

(
1 + χ2

1

)
/2, and xit is generated as

xit = µxi + ξit, (48)

where ξit = ρxiξi,t−1+σxi
(
1− ρ2xi

)1/2
νit, νit ∼ iidN (0, 1) , µxi = (z2i −1)/

√
2, zi ∼ iidN (0, 1) , and

σ2xi ∼ iid
(
1 + χ2

1

)
/2, for individual units i = 1, 2, . . . , N , and observation periods t = 1, 2, . . . , T .

The autocorrelation coefficient of xit is ρxi ∼ iidUniform(0, 0.95), allowing for a high degree of

dynamic heterogeneity in the regressors.

The coefficients of the lagged dependent variables, yi,t−1, are generated as βi = β0 + ηiβ, with

ηiβ ∼ iidUniform(−aβ/2, aβ/2) and 0 ≤ aβ < 2(1− |β0|).

To allow for correlated heterogeneity, we set

αi = α0i + ϕµxi + σηηi, and γi = γ0i + πµxi + σζζi, (49)

where ηi, ζi ∼ iidN(0, 1) and α0 = E(αi) = α0i + ϕE (µxi) = α0i. We examine three settings:

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, γ0i = 0.1, and σ2γ = aβ = 0

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, γ0i = 0.2/3 if i ≤ N/2, γ0i = 0.4/3 if

i > N/2, σ2γ = 0.1, and aβ = 0.5

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 1, γ0i = 0.2/3 if i ≤ N/2, γ0i = 0.4/3 if

i > N/2, σ2γ = 0.2, and aβ = 1

Note that non-zero correlations need not bias the pooled estimates. What matters for pooled

estimates is the correlation between y2i,t−1 and x2it and the individual coefficients.

Using (48) and (49), we have

E [xit (γi − γ0)] = E [(µxi + ξit) (πµxi + σζζi)] = πE
(
µ2xi
)
̸= 0,

E
[
x2it (γi − γ0)

]
= E

[
(µxi + ξit)

2 (πµxi + σζζi)
]
= πE

(
µ3xi
)
.

Therefore, E
[
x2i,t−1 (γi − γ0)

]
= 0 if µxi are draws from a symmetric distribution around 0. To rule

out this possibility, we draw µxi from a chi-square distribution. To control the degree of correlated
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heterogeneity, we first note that (taking expectations with respect to both i and t)

E (γi) = γ0, Var(γi) = π2 + σ2ζ ,

E (xit) = E (µxi + ξit) = 0, Var (xit) = E (xit − µxi)
2 = σ2xi,

and E [Var (xit)] = E
(
1 + χ2

1

)
/2 = 1. Also, since νit is distributed independently of ηj and ζj for all

t, i and j, Cov (γi, xit) = π and Corr (γi, xit) = π
(
σ2ζ + π2

)−1/2
. While heterogeneity is generally

correlated in AR panel models (Pesaran and Smith, 1995), this setup allows us to study further

the role of correlated heterogeneity by varying the correlation between the coefficient γi and xit as

measured by ργx. To achieve a given level of Corr(γi, xit) = ργx, we set

π =
ργxσζ(

1− ρ2γx
)1/2 . (50)

Similarly, to achieve Corr(αi, xi,t−1) = ραx, we set

ϕ =
ραxση

(1− ρ2αx)
1/2

. (51)

Defining σ2γ = Var(γi) = π2 + σ2ζ , we can use (50) to see that π = ργxσγ . An equivalent result

emerges for ϕ where, for σ2α = Var(αi), we have ϕ = ραxσα. We thus use the parameters σ2α, σ
2
γ , and

aβ to vary the degree of parameter heterogeneity in αi, γi and βi, respectively.

We set ξi0 = 0 and initialize yi0 as yi0 ∼ iidN
(
µiy0, σ

2
iy0

)
with µiy0 =

αi+γiµxi

1−β2
i
, σ2iy0 =

γ2
i σ

2
xi+σ2

i

1−β2
i
,

We also experimented with initialization schemes that started the DGP on values away from the

long run equilibrium, which did not change the results qualitatively.

Since the forecast combinations use wi,T+1 = (1, yiT , xi,T )
′ as an input, in the simulations we set

wi,T+1 as wi,T+1 =
(
1, E (yit) + κi

√
Var(yit), µxi + κiσxi

)′
, where E (yit) and Var(yit) are derived

by assuming yit is stationary and conditional on the model’s parameters.16

The panel forecasts are evaluated using the ratio of the average MSFE of method j (pooling,

fixed effects, random effects, empirical Bayes, and the forecast combinations) measured relative to

16It is easily established that E (yit) =
αi+βiµxi

1−βi
and Var(yit) =

σ2
i

1−β2
i
+

(
γ2
i σ

2
xi

1−β2
i

)(
1 + 2βiρxi

1−βiρxi

)
.
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that of the reference individual forecasts

rMSFEj =
1

NR

∑N
i=1

∑R
r=1(yi,T+1,r − ŷi,T+1,j,r)

2

1
NR

∑N
i=1

∑R
r=1(yi,T+1,r − ŷi,T+1,b,r)2

,

where b denotes the benchmark forecast which is the individual forecast. Replications are denoted

by r = 1, 2, . . . , R, where R = 10, 000.

5.2 Simulation Results

Monte Carlo simulation results are reported in Table 1. Our theoretical analysis shows that the

term hNT that adversely affects forecasts from the individual estimates depends on the value of

∥wi,T+1 − E[wi,T+1]∥, with small values of these deviations leading to better forecasting perfor-

mance for the individual estimates. To examine this effect, we present two sets of conditional

forecasting performance results, namely for κi = 0, that is when wi,T+1 is set to its mean E(wit) =

(1,E (yit) , µxi + κiσxi) in the top panel and when wi,T+1 deviates from its mean by generating fore-

casts conditional on wi,T+1 =
(
1,E (yit) + κi

√
Var(yit), µxi + κiσxi

)′
in the bottom panel. We set

κi = 1 for i ≤ N/2, and κi = −1, for i > N/2.

We vary the parameter that controls correlation in heterogeneity (ργx) across three blocks of

results and examine different combinations of the two hyperparameters that determine heterogeneity,

aβ and σ2α. Finally, we vary the time-series dimension (T ) along the columns.

With little heterogeneity and a small time-series dimension, T = 20, consistent with Propositions

1 and 2, pooling yields an MSFE up to 25% lower than the individual forecast with the gain being

largest when the predictor is far from its mean (κi = ±1). However, the advantage of the pooled

forecasts over the individual forecasts vanishes quickly for the two larger values of T and turns to

distinctly worse performance under larger parameter heterogeneity—particularly when the predictors

are away from their mean.

The RE estimator produces the most accurate forecasts when parameter heterogeneity is limited

to the intercept (aβ = 0, σ2α = 0.5) and the predictor is far from its mean. When slope coefficients

are heterogeneous, this method yields quite poor forecasting performance that deteriorates with T .

Similar findings hold for the forecasts based on the FE method. Forecast accuracy for both methods

tends to worsen (relative to the benchmark forecasts) under correlated heterogeneity.
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Regardless of the level of heterogeneity in parameters (whether correlated or not), the empirical

Bayes forecasts perform very well particularly for the smallest sample size (T = 20). Unlike forecasts

based on the pooled, RE or FE estimators, the empirical Bayes forecasts have the attractive feature

that they never perform worse, on average, than the benchmark. These forecasts perform particularly

well when the predictor is away from its mean value.

Among the three forecast combinations, the cross-sectional averaging scheme that combines the

pooled and individual forecasts generally performs better than the fixed effect combination scheme

and also, in some cases, improves on the EB forecasts. When wi,T+1 is far away from its mean,

T is small, and parameter heterogeneity is high, the combination scheme with individual weights

performs particularly well, including relative to the EB forecast.

6 Empirical applications

We next apply our set of panel forecasting methods to two empirical applications on house price

inflation in U.S. metropolitan areas and inflation in CPI sub-indices. These applications represent

quite different levels of in-sample fit: For the CPI data the pooled R2 (PR2) of our models is around

0.2 while for house prices it exceeds 0.8.

6.1 Measures of forecasting performance

Our empirical applications compute the out-of-sample MSFE as MSFEij = (T−T1)−1
∑T−1

t=T1
(yi,t+1−

ŷi,j,t+1)
2, where ŷi,j,t+1 is the forecast of yi,t+1 using method j and information known at time t. Each

forecast in the test sample, ŷi,j,t+1, is generated using a rolling estimation window of observations

t − w + 1, t − w, . . . , t, where w is the length of the rolling window, which we set to w = 60 in

both applications. As in the simulations, we report the ratio of the average MSFE of method j

relative to the average MSFE for the benchmark forecasts (b) from the individual-specific model

rMSFEj =
(
N−1

∑N
i=1MSFEij

)
/
(
N−1

∑N
i=1MSFE

ib

)
. We also report the proportion of units in

the cross-section for which each method produces a smaller MSFE than the benchmark along with

the proportion of units in the cross-section for which each method has the smallest or largest MSFE

value.

Similar to the simulation study, we distinguish between forecasts where the regressors are close to
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their mean or one standard deviation away from their mean. Unlike in the Monte Carlo experiments,

the parameters are unknown in the two applications and we, therefore, select forecasts based on

di,T+1 = θ̂
′
iwi,T+1. Regressors are said to be in the neighborhood of the mean of dit when |di,T+1 −

d̄i−κisd| < cσd, where d̄i is the mean and sd the standard deviation of dit in the estimation sample,

t = 1, 2, . . . , T and c = 0.1. κi = 0 then gives the results where the predictors are close to their mean

and κi = ±1 shows the results when the predictors one standard deviation away from the mean.

Additionally, we report results for all forecasts.

We examine the significance of any differences in forecast accuracy using the Diebold and Mariano

(1995) (DM) test of predictive accuracy both for the panel as a whole and for the individual series.

First, we use the panel version of the DM test proposed by Pesaran et al. (2013). This tests the

null that the MSFE generated by the individual forecasts, averaged both across time and units, is

equal in expectation to the equivalent MSFE generated by the panel models.17 Second, we apply the

DM test to the N forecasts for individual units in the sample and report the number of significant

values in either direction and the number of insignificant test statistics. The tests are set up so that

negative values indicate that the panel forecasts are more accurate than the individual forecasts,

while positive values of the DM tests indicate that the individual forecasts are more accurate. For

simplicity, we report results for all forecasts.

6.2 U.S. house prices

Our first application uses quarterly data on real house price inflation in 377 U.S. Metropolitan

Statistical Areas (MSAs) from the first quarter of 1975 to the first quarter of 2023, which we obtain

from the Freddie Mac website.18 Our forecasts target the one-quarter-ahead MSA-level rate of house

price log changes. After accounting for the necessary pre-sample and the estimation window, the

first forecast is for 1991Q2 and the last for 2023Q1, a total of 128 forecasts per MSA.

Our prediction model for the house price inflation rate in quarter t for MSA i, yit, takes the form

yit = αi + βiyi,t−1 + β∗i y
∗
i,t−1 + γRiȳ

(R)
i,t−1 + γCiȳ

(C)
t−1 + εit, (52)

17The panel DM test first computes the difference between the cross-sectional average squared forecast error at a
given point in time for the benchmark versus competing model. It then uses the time series of these average squared
forecast errors to compute Newey-West HAC standard errors that account for serial dependencies.

18For each MSA house prices are calculated by deflating the Freddie Mac house price index by the CPI.
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where i = 1, 2, . . . , N denotes individual MSAs and t = 1, 2, . . . , T refers to the time period,

y∗it =
∑N

k=1,k ̸=i ω
s
ikykt is the spatial effect for a set of spatial weights ωs

ik, ȳ
(R)
it is the average house

price inflation in the region of unit i, and ȳ
(C)
t is the country-wide average house price inflation. The

weights, ωik, measure the spatial effect of house prices in MSA k on house prices in MSA i and are

based on geographic distance, that is ωs
ik = vik/

∑N
k=1 vik and vik = 1 if MSAs (i, k) are at most

100 miles apart and is zero otherwise. We obtain the weights from the data set of Yang (2021) and

exclude MSAs without neighbors within 100 miles, which leaves 362 MSAs in our sample.

The top panel in Table 2 reports the results. The column labeled “all” shows results averaged

across the full test sample, while columns labeled κi = 0 and κi = ±1 show results for sub-samples

in which the predictor vector is close to the mean and one standard deviation away from the mean,

respectively. In the first three columns, the first row shows the cross-sectional average MSFE value

for the forecasts based on individual estimates. Subsequent rows report ratios of the mean of the

individual MSFE for the respective methods relative to the benchmark forecasts. Values below unity

show that the ratio of average MSFE performance (across MSAs) is better for the method listed

in the row than for the benchmark while values above unity indicate the opposite. The next three

columns headed ‘freq. beating benchmark’ report the proportion of MSAs for which the respective

methods have a smaller MSFE than the benchmark, while the columns headed ‘freq. smallest MSFE’

and ‘freq. largest MSFE’ show the proportion of MSAs for which the respective methods have the

smallest or largest MSFE among all forecasting methods.

Across the full sample, the average MSFE ratio below one for the pooled, RE, and FE forecasts.

However, these methods do notably worse than the forecasts based on individual estimates when

the predictors are close to their mean (κi = 0). Empirical Bayes forecast produce the best overall

MSFE performance, reducing the MSFE of the benchmark by 10%, followed by reductions of 6-8%

among the three forecast combination schemes. The EB forecasts perform particularly well when

the predictors are far away from their mean.

While the proportional reductions in MSFE ratios may not seem very large, they translate into

very high frequencies of beating the benchmark. The EB forecasts produce lower MSFE values than

the benchmark for 94% of the housing price series followed by 92-94% for the forecast combinations

but only 59-62% for the pooled, RE, and FE forecasts.

Turning to evidence of individual forecasts being “best” or “worst”, for the full test sample the
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benchmark forecasts only produce the smallest MSFE for 1% of the variables versus 19% for the EB

and 16% for pooled forecast combination schemes. Using this metric, again the benchmark forecasts

perform much better when the predictors are close to their sample mean for which they are most

accurate for 27% of the MSAs versus 16% and 8% for the EB and pooled combinations, respectively.

Conversely, forecasts based on individual estimates are worst overall for 57% of the variables versus

1% or less for the EB and forecast combination schemes.

These results show that the EB and combination approaches offer the attractive feature of not

only improving on the MSFE values of the baseline “on average” but, equally importantly, rarely

producing markedly worse forecasts than the baseline and often generating substantially better

results. Interestingly, the risk of producing the highest MSFE value is notably lower for the pooled

combination and individual weighted combination than for the EB forecasts when the predictors are

close to their mean.19

Figure 1 summarizes our findings visually through density plots fitted to the cross-sectional

distribution of MSFE ratios for our forecasting methods.20 MSFE ratios have a widely dispersed,

right-skewed distribution for the pooled forecasts compared to the Bayesian and combination ap-

proaches whose distributions are far more peaked and centered just below unity. This feature is

highly undesirable as it raises the likelihood of very poor forecasts for an individual housing price

series compared with that of the Bayesian and combination approaches.21

The first and second rows of Table 3 reports panel DM test statistics and the number of cross-

sectional units with a DM test below −1.96 (panel forecasts are significantly more accurate) or above

1.96 (individual-specific forecasts are significantly more accurate), respectively, for each application.

The panel DM tests show that the EB and combination forecasts are significantly more accurate

than the individual forecasts “on average” as well as for a large portion of the individual series

(between 169 and 240 MSAs), while the opposite only happens for two individual MSAs in the case

of the EB forecasts. Pooled, RE and FE panel forecasts are also significantly more accurate than

the individual forecasts on average as well as for between 57 and 62 of the individual MSAs and

significantly less accurate for very few MSAs.

19Equal-weighted combinations also performs quite well in both of the empirical applications, which is a known
feature in the forecast combination literature.

20To reduce the number of lines, we do not plot the densities for the FE and RE approaches which are very similar
to those from pooling.

21The impressive performance of the EB approach for the tail groups is consistent with Efron (2011).
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Figure 1: Distributions of ratios of MSFEs
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Notes: The graphs show density plots of the ratios of MSFEs for the house price application
in the left column and those for the CPI subindices application in the right column. In the
first row are the density plots for the MSFEs from all forecasts, in the second row for the

forecasts for which di,T+1 = θ̂
′
iwi,T+1 is close to its mean in the estimation sample, and in

the third row for the forecast for which di,T+1 is close to plus or minus one standard deviation
from its mean in the estimation sample. The density estimates use a normal kernel with a
bandwidth 0.04. The forecasting methods are listed in the footnote of Tables 1.



Table 3: Diebold-Mariano test statistics for equal predictive accuracy

Pooled RE FE Emp.Bay. Comb(pool) Comb(FE) Comb(ω∗
i )

House Prices: all forecasts

Panel DM −9.45 −9.11 −7.57 −24.63 −22.93 −21.19 −27.59
DM < −1.96/DM > 1.96 60/6 62/6 57/8 209/2 189/0 169/0 240/0

CPI: all forecasts

Panel DM −7.95 −7.78 −7.56 −11.25 −11.67 −10.59 −11.48
DM < −1.96/DM > 1.96 35/60 33/45 32/42 134/0 56/23 50/10 137/0

Notes: The row “Panel DM” reports the results of the panel version of the Diebold-Mariano test of Pesaran et al. (2013).
The second row report unit by unit Diebold-Mariano test results: “DM < −1.96” reports the number of units with a
DM test statistic smaller than −1.96 and “DM > 1.96” shows the number of units whose test statistic exceeds 1.96. The
remaining units have insignificant DM test statistics. In total the house prices panel consist of 362 units and the CPI panel
of 187 units. Each test is for the null hypothesis that the forecasting method in the columns has equal forecast accuracy
as the forecasts based on individual estimates. The forecasting methods are listed in the footnote of Table 1.

6.3 CPI inflation of sub-indices

Our second application covers inflation rates for up to 187 sub-indices of the US consumer price index

(CPI) obtained from the FRED database. The data is measured at the monthly frequency and spans

the period from January 1967 to December 2022. Again, we use rolling estimation windows with 60

observations and require each estimation sample to be balanced, excluding individual series without

a complete set of observations in a given window. After accounting for the necessary pre-samples,

we generate up to 599 forecasts for each series, with the first forecast computed for February 1973.

We consider an autoregressive forecasting specification with lags 1, 2, and 12 augmented with

lagged values of the first principal component of the data, the default yield and term spread.

The bottom panel of Table 2 shows that, for the full test sample, all forecasting methods produce

lower MSFE values than the benchmark. The pooled, RE, FE and EB forecasts reduce the average

MSFE of the benchmark by around 12%, while the forecast combination methods reduce it by 7-

10%. Interestingly, when the predictors are close to their sample mean, the lowest MSFE ratios are

produced by the three forecast combination methods, while conversely the EB scheme performs best

when the predictors are further removed from their mean.

The EB forecasting scheme performs particularly well overall, beating the benchmark model’s

accuracy for 98% of the variables followed by 97% for the individual weights, 73-79% for the pooled

and FE combinations and around 50% for the RE and FE schemes. As in the first application, these

percentages are notably lower for predictors close to their mean and higher further away.

The EB forecasts also produce by far the highest frequency with the smallest MSFE values overall
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(39%) followed by 20% for the pooled and individual forecast combination scheme. This is matched

by very low probabilities of producing the worst forecast which never occurs in our sample for the

EB method or any of the three forecast combination schemes but is far more likely to occur for the

benchmark (43.9%) and pooled forecasts (39.6%).

Our evidence is summarized the probability density plots for the MSFE ratios in the right panels

of Figure 1. The figure clearly highlights the pronounced dispersion and thick right tails of the

MSFE-ratio distribution for the pooled forecasts. The distributions of MSFE ratios of the EB

and combination approaches are far more concentrated and less asymmetrical. For values of the

predictors farther away from the mean, the tails of the densities are somewhat thicker, with the

EB approach standing out as having the thinnest right tail and, hence, the lowest probability of

generating forecasts less accurate than those from the individual-specific benchmark.

Turning to the DM test results for the CPI inflation data in Table 3, all panel models generate

significantly negative DM panel test statistics and so their associated forecasts are significantly

more accurate, on average, than the individual forecasts. The pooled, RE, and FE models perform

somewhat worse in this application, as the number of individual CPI series for which their forecasts

are significantly more accurate than the individual-specific forecasts is smaller than those for which

the opposite holds. Conversely, the EB and combination forecasts continue to be significantly more

accurate than the benchmark forecasts for between 50 and 137 of the individual CPI series and are

only significantly less accurate for between zero and 23 series. The EB and individual combination

approaches perform particularly well in this application.

7 Conclusion

We provide a comprehensive examination of the out-of-sample predictive accuracy of a large set of

novel and existing panel forecasting methods, including individual estimation, pooled estimation,

random effects, fixed effects, empirical Bayes, and forecast combinations.

Our main findings can be summarized in three points. First, we find that many panel forecasting

approaches perform systematically better than forecasts based on individual estimates. For panels

with a small or medium-sized time-series dimension T–a setting relevant to many empirical appli-

cations in economics–our Monte Carlo simulations and empirical applications demonstrate sizeable

gains both on average and for the majority of individual units from exploiting panel information.
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Second, our analytical results and Monte Carlo simulations show that one should not expect a

single forecasting approach to be uniformly dominant across applications that differ in terms of the

cross-sectional and time-series dimensions, strength of predictive power, and degree of heterogeneity

in intercept and slope coefficients along with how correlated this heterogeneity is.

Forecasts based on pooled estimates are most accurate only in situations with little or no param-

eter heterogeneity and a small T dimension, while forecasts based on FE and RE estimates perform

relatively well mainly when heterogeneity is confined to model intercepts and T is small. Neither of

these approaches perform well in settings with high levels of heterogeneity where individual-specific

forecasts tend to perform better, particularly if T is relatively large. By over-weighting forecasts that

perform well and underweighting forecasts that perform poorly, forecast combination and empirical

Bayes methods manage to produce the most accurate forecasts across a broad range of settings.

Third, the panel forecasting methods differ in terms of their ability to reduce the probability of

generating very poor forecasts for individual units in a cross-section. While the individual, pooled,

random and fixed effect estimation methods perform poorly in some of the simulations and empirical

applications, the forecast combination and empirical Bayes methods rarely generate the least accu-

rate forecasts for individual units and retain some probability of being the best forecasting method.

These panel forecasting approaches therefore come out on top of our analysis.

In a nutshell, our simulations and empirical applications suggest that forecast combinations and

Bayesian panel methods offer insurance against poor performance. Compared to the alternative

forecasting methods we consider, this better “risk-return” trade-off makes the combination and

Bayes methods attractive in forecast applications with panel data.
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Mathematical Appendix

A.1 Lemmas

Lemma 1 Suppose that Assumptions 8 and 9 hold, then for a fixed T > T0 we have

Q̄NT − E
(
Q̄NT

)
= Op(N

−1/2), and q̄NT − E (q̄NT ) = Op

(
N−1/2

)
, (A.1)

and

Q̄
−1
NT − E

(
Q̄NT

)−1
= Op(N

−1/2), (A.2)

where Q̄NT = N−1
∑N

i=1QiT , q̄NT = N−1
∑N

i=1 qiT , QiT = T−1
∑T

t=1witw
′
it, and qiT =

T−1
∑T

t=1witw
′
itηi. Further, under Assumptions 3 and 5

E
(
Q̄NT

)
= Q̄N , and E (q̄NT ) = q̄N , (A.3)

where Q̄N = N−1
∑N

i=1Qi, q̄N = N−1
∑N

i=1 qi, Qi = E(witw
′
it), and qi =E(witw

′
itηi) .

Proof Note that

Q̄NT −E
(
Q̄NT

)
= N−1

N∑
i=1

[QiT − E (QiT )] , and q̄NT −E (q̄NT ) = N−1
N∑
i=1

[qiT − E (qiT )] .

Under Assumptions 3 and 9, the elements of QiT −E (QiT ) and qiT −E (qiT ) are independently

distributed with mean zero and finite variances. Therefore, (A.1) follows. Also

∥∥∥Q̄−1
NT − E

(
Q̄NT

)−1
∥∥∥ =

∥∥∥Q̄−1
NT

[
Q̄NT − E

(
Q̄NT

)]
E
(
Q̄NT

)−1
∥∥∥

≤
∥∥∥Q̄−1

NT

∥∥∥∥∥Q̄NT − E
(
Q̄NT

)∥∥ ∥∥∥E (Q̄NT

)−1
∥∥∥ ,

and, by Assumption 8,
∥∥∥Q̄−1

NT

∥∥∥ = λmax

(
Q̄

−1
NT

)
< C, and

∥∥∥E (Q̄NT

)−1
∥∥∥ =

∥∥∥Q̄−1
N

∥∥∥ = O(1).

Hence,
∥∥∥Q̄−1

NT − E
(
Q̄NT

)−1
∥∥∥ has the same order as

∥∥∥Q̄−1
NT − E

(
Q̄NT

)−1
∥∥∥ = Op(N

−1/2),

as required. Result (A.3) follows from the stationarity properties, Qi = E(witw
′
it) and
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qi =E(witw
′
itηi).

Lemma 2 Under Assumptions 1-9

sup
i,T

E
∥∥∥√T (θ̂i − θi

)∥∥∥s < C, s = 1, 2, (A.4)

where θ̂i − θi = (W ′
iW i)

−1W ′
iεi, and

sup
i,T

E
∥∥∥θ̃ − θi

∥∥∥ < C, (A.5)

θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT .

Proof Since
∥∥∥√T (θ̂i − θi

)∥∥∥ ≤
∥∥Q−1

iT

∥∥∥∥T−1/2W ′
iεi
∥∥, then

∥∥∥√T (θ̂i − θi

)∥∥∥2 ≤ ∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 ,
and by the Cauchy–Schwarz inequality

sup
i,T

E
∥∥∥√T (θ̂i − θi

)∥∥∥2 ≤

(
sup
i,T

E
∥∥Q−1

iT

∥∥4)1/2(
sup
i,T

E
∥∥∥T−1/2W ′

iεi

∥∥∥4)1/2

=

{
sup
i,T

E
[
λ4max

(
Q−1

iT

)]}1/2(
sup
i,T

E
∥∥∥T−1/2W ′

iεi

∥∥∥4)1/2

.

Both of the terms on the right hand side of the above are bounded under Assumption 4, and we

have supi,TE
∥∥∥√T (θ̂i − θi

)∥∥∥2 < C. This result in turn implies supi,TE
∥∥∥√T (θ̂i − θi

)∥∥∥ < C,

and result (A.4) follows. Regarding θ̃ − θi, we first note that

∥∥∥θ̃ − θi

∥∥∥ ≤ ∥ηi∥+
∥∥∥Q̄−1

NT

∥∥∥ ∥q̄NT ∥+
∥∥∥Q̄−1

NT

∥∥∥∥∥ξ̄NT

∥∥ ,
and

E
∥∥∥θ̃ − θi

∥∥∥ ≤ E ∥ηi∥+
(
E
∥∥∥Q̄−1

NT

∥∥∥2)1/2 (
E ∥q̄NT ∥

2
)1/2

+

(
E
∥∥∥Q̄−1

NT

∥∥∥2)1/2 (
E
∥∥ξ̄NT

∥∥2)1/2 .
(A.6)
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Under Assumption 5, E∥ηi∥ < C and supi,tE∥witw
′
itηi∥

2 < C. Also by the Cauchy-Schwarz

inequality

E ∥witεit∥2 ≤
(
E ∥wit∥4

)1/2 (
|εit|4

)1/2
,

and, under Assumptions 1 and 3 we have supi,tE∥witεit∥2 < C. Then, applying Minkowski’s

inequality to ξ̄NT = N−1T−1
∑N

i=1

∑T
t=1witεit,

E
∥∥ξ̄NT

∥∥
2
=
(
E
∥∥ξ̄NT

∥∥2)1/2 ≤ N−1T−1
N∑
i=1

T∑
t=1

E ∥witεit∥2 ≤ sup
i,t

(
E ∥witεit∥2

)1/2
,

and it follows that E
∥∥ξ̄NT

∥∥2 < C. Similarly, since q̄NT = N−1T−1
∑N

i=1

∑T
t=1witw

′
itηi

and supi,t E ∥witw
′
itηi∥

2 < C, then E ∥q̄NT ∥
2 < C. Also, by Assumption 8,

∥∥∥Q̄−1
NT

∥∥∥2 =

λmax

(
Q̄

−2
NT

)
< C. Using these results in (A.6) now yields (A.5).

A.2 Proofs of the propositions

A.2.1 Proof of Proposition 1

Let P i = W i(W
′
iW i)

−1. Using (17), note that

E (riT |εi,W i,wi,T+1 ) =
(
ε′iP iwi,T+1

)
E (εi,T+1 |εi,W i,wi,T+1 ) ,

and, under Assumptions 1 and 2, E (εi,T+1 |εi,W i,wi,T+1 ) = 0, for all i. Hence, unconditionally

E (riT ) = 0. Furthermore, |riT | ≤ ∥ε′iP i∥ ∥wi,T+1∥ |εi,T+1| and |εi,T+1| is distributed independently

of wi,T+1 and T−1ε′iP i. Hence by the Cauchy–Schwarz inequality

E |riT | ≤
[
E
∥∥ε′iP i

∥∥2]1/2 (E ∥wi,T+1∥2
)1/2

E |εi,T+1| .
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Again, under Assumption 1, supi,T E |εi,T+1| < C and supi,T E ∥wi,T+1∥2 < C. Also, since Q−1
iT is

symmetric,
∥∥Q−1

iT

∥∥2 = λ2max

(
Q−1

iT

)
and we have

∥∥ε′iP i

∥∥2 =
∥∥T−1ε′iW i(T

−1W ′
iW i)

−1
∥∥2 ≤ T−1

∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 (A.7)

≤ λ2max

(
Q−1

iT

) ∥∥T−1W ′
iεi
∥∥2 .

By the Cauchy-Schwarz inequality and under Assumption 4

sup
i,T

E
∥∥ε′iP i

∥∥2 ≤ {sup
i,T

E
[
λ2max

(
Q−1

iT

)]}1/2 [
sup
i,T

∥∥T−1W ′
iεi
∥∥4]1/2 < C,

and supi,T E |riT | < C. Finally, under Assumption 9, riT are independently distributed over i. Then,

by the law of large numbers for independently distributed processes with zero means we have

RNT = Op(N
−1/2). (A.8)

Consider now SNT and note that

SNT = N−1
N∑
i=1

E(siT ) +N−1
N∑
i=1

[siT − E(siT )] ,

where siT is given by (18). Under Assumption 9, siT is distributed independently across i, and the

second term of SNT will be Op(N
−1/2) if supi,T E |siT | < C. Also

|siT | ≤ ∥wi,T+1∥2
∥∥Q−1

iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 ,
and supi,T ∥wi,T+1∥ < C. Hence, supi,T E |siT | < C follows if

sup
i,T

E

[∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2] < C.

This condition is satisfied by Assumptions 1 and 4, noting that by the Cauchy–Schwarz inequality

E

[∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2] ≤ [E∥∥Q−1
iT

∥∥4]1/2 [E∥∥∥T−1/2W ′
iεi

∥∥∥4]1/2 ,
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and
∥∥Q−1

iT

∥∥4 = λ4max

(
Q−1

iT

)
. Therefore, SNT = E(SNT )+Op(N

−1/2), where E (SNT ) = N−1
∑N

i=1E(siT ) =

hNT , and the result in equation (19) follows, with hNT given by (20).

A.2.2 Proof of Proposition 2

The average MSFE of forecasts based on pooled estimates is given by (21) which we reproduce here

for convenience.

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 + S̃N,T+1 + 2R̃N,T+1, (A.9)

where

S̃N,T+1 = q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT + ξ̄

′
NT Q̄

−1
NT Q̄N,T+1Q̄

−1
NT ξ̄NT (A.10)

−2q̄′NT Q̄
−1
NT q̄N,T+1 − 2ξ̄

′
NT Q̄

−1
NT q̄N,T+1 + 2ξ̄

′
NT Q̄

−1
NT Q̄N,T+1Q̄

−1
NT q̄NT ,

R̃N,T+1 = N−1
N∑
i=1

η′
iwi,T+1εi,T+1 −

(
q̄′NT Q̄

−1
NT + ξ̄

′
NT Q̄

−1
NT

)(
N−1

N∑
i=1

wi,T+1εi,T+1

)
, (A.11)

and

Q̄N,T+1 = N−1
N∑
i=1

wi,T+1w
′
i,T+1, and q̄N,T+1 = N−1

N∑
i=1

wi,T+1w
′
i,T+1ηi. (A.12)

Under Assumption 7, ξ̄NT = Op

(
N−1/2

)
. Using Lemma A.1, we have Q̄

−1
NT = Q̄

−1
N +Op

(
N−1/2

)
=

Op(1), and similarly q̄NT = Op(1) and q̄N,T+1 = Op(1). Using these results in (A.10) we now have

S̃N,T+1 = q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT − 2q̄′NT Q̄

−1
NT q̄N,T+1 +Op

(
N−1/2

)
. (A.13)

Note that under stationarity (see Assumptions 3 and 5), E
(
wi,T+1w

′
i,T+1ηi

)
= qi, E

(
wi,T+1w

′
i,T+1

)
=

Qi, and consider

q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT =(∆q,NT + q̄N )′

(
∆Q,NT + Q̄

−1
N

) (
Q̄N,T+1 − Q̄N + Q̄N

)
×
(
∆Q,NT + Q̄

−1
N

) (
q̄N,T+1 − q̄N + q̄N

)
,
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where (by Lemma A.1)

∆Q,NT = Q̄
−1
NT − Q̄

−1
N = Op(N

−1/2), ∆q,NT = q̄NT − q̄N = Op(N
−1/2),

and Q̄N and q̄N are defined by (8) and (10), respectively. Also note that

Q̄N,T+1 = N−1
N∑
i=1

E
(
wi,T+1w

′
i,T+1

)
+Op(N

−1/2) = Q̄N +Op(N
−1/2),

q̄N,T+1 = N−1
N∑
i=1

E
(
wi,T+1w

′
i,T+1ηi

)
+Op(N

−1/2) = q̄N +Op(N
−1/2).

Hence, it readily follows that

q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT = q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
. (A.14)

Similarly, q̄′NT Q̄
−1
NT q̄N,T+1 = q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
, and as a result

S̃N,T+1 = −q̄′NQ̄
−1
N q̄N +Op

(
N−1/2

)
.

Finally, since εi,T+1 (which has zero mean) is distributed independently of wi,T+1 and ηi, under

Assumption 9,

N−1
N∑
i=1

η′
iwi,T+1εi,T+1 = Op(N

−1/2), and N−1
N∑
i=1

wi,T+1εi,T+1 = Op(N
−1/2),

and R̃N,T+1 = Op(N
−1/2), noting that

(
q̄′NT Q̄

−1
NT + ξ̄

′
NT Q̄

−1
NT

)
= Op(1). Using this result and

(A.14) in (21) now yields

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1+N
−1

N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1− q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
. (A.15)

Also, under Assumption 9, w′
i,T+1ηiη

′
iwi,T+1 is independently distributed over i and we have, noting

that under Assumption 5, supi,TE
∣∣∣w′

i,T+1ηiη
′
iwi,T+1

∣∣∣ = supi,TE
∥∥∥w′

i,T+1ηi

∥∥∥2 < C,

N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 = N−1

N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
+Op

(
N−1/2

)
.
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Using this result in (A.15) now yields equation (22).

To establish part (b) of Proposition 2 note that the first term of ∆NT , N
−1
∑N

i=1 E
(
w′

i,T+1ηiη
′
iwi,T+1

)
=

N−1
∑N

i=1 E
(
w′

i,T+1ηi

)2
≥ 0, arises irrespective of whether heterogeneity is correlated or not. The

second term, q̄NQ̄
−1
N q̄′N , enters only if heterogeneity is correlated. The balance of the two terms

(∆NT ), can be signed under stationarity where E
(
w′

i,T+1ηiη
′
iwi,T+1

)
= E(w′

itηiη
′
iwit). In this

case, we have

∆N = N−1
N∑
i=1

E
(
w′

itηiη
′
iwit

)
− q̄′NQ̄

−1
N q̄N . (A.16)

To establish that the net effect of the two terms in ∆NT is non-negative, we first show that the

sample estimate of ∆NT can be obtained as the sum of squares of the residuals from the pooled

panel regression of η′
iwit on wit. Consider the panel regression η′

iwit = γ ′wit + νit, and note that

the pooled estimator of γ is given by

γ̂NT =

(
N−1T−1

N∑
i=1

T∑
t=1

witw
′
it

)−1

N−1T−1
N∑
i=1

T∑
t=1

witw
′
itηi = Q̄

−1
NT q̄NT ,

which yields the residual sum of squares

N−1T−1
N∑
i=1

T∑
t=1

ν̂2it = N−1T−1
N∑
i=1

T∑
t=1

(
η′
iwit − γ̂ ′

NTwit

)2
= ∆̊NT .

By construction, ∆̊NT is non-negative and is given by

∆̊NT = T−1N−1
T∑
t=1

N∑
i=1

w′
itηiη

′
iwit − q̄′NT Q̄

−1
NT q̄NT ≥ 0.

This result also holds for a fixed T and as N → ∞ (applying Slutsky’s theorem to the second term):

lim
N→∞

∆̊NT = plim
N→∞

N−1T−1
N∑
i=1

T∑
t=1

ν̂2it ≥ 0.
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A.2.3 Proof of Proposition 3

Using (14) and (15),

N−1
N∑
i=1

êi,T+1ẽi,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi) (A.17)

−N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1εi,T+1 −N−1

N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1,

where θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT , and θ̂i − θi = (W ′

iW i)
−1W ′

iεi. Noting that the third

term in the above, apart from the minus sign, is the same as RNT defined below (16), by (A.8) it

follows that

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1εi,T+1 = N−1

N∑
i=1

riT = RNT = Op(N
−1/2). (A.18)

Further,

N−1
N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1 = −N−1

N∑
i=1

η′
iwi,T+1εi,T+1 + Q̄

−1
NT q̄NT

(
N−1

N∑
i=1

wi,T+1εi,T+1

)

+Q̄
−1
NT ξ̄NT

(
N−1

N∑
i=1

wi,T+1εi,T+1

)
.

By Lemma A.1, Q̄
−1
NT = Op(1) and q̄NT = Op(1), and by Assumption 7 , ξ̄NT = Op(N

−1/2).

Also, under Assumptions 1 and 6, η′
iwi,T+1εi,T+1 and wi,T+1εi,T+1 have mean zero and first order

moments. Hence, given Assumption 9 we have

N−1
N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1 = Op

(
N−1/2

)
. (A.19)
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Consider now the second term of (A.17):

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi)

= N−1
N∑
i=1

(
−ηi + Q̄

−1
NT q̄NT + Q̄

−1
NT ξ̄NT

)′
wi,T+1w

′
i,T+1(W

′
iW i)

−1W ′
iεi

= N−1
N∑
i=1

(
−η′

i + q̄′NT Q̄
−1
NT

)
wi,T+1w

′
i,T+1(W

′
iW i)

−1W ′
iεi

+ξ̄
′
NT Q̄

−1
NT

[
N−1

N∑
i=1

wi,T+1w
′
i,T+1(W

′
iW i)

−1W ′
iεi

]
,

where, as noted above, ξ̄
′
NT Q̄

−1
NT = Op

(
N−1/2

)
. Also, under stationarity (Assumption 3) and using

(A.1) and (A.2) (See Lemma A.1), q̄NT = q̄N +Op

(
N−1/2

)
and Q̄

−1
NT = Q̄

−1
N +Op

(
N−1/2

)
, and we

have

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi) = (g1,nT − g2,nT ) +Op(T

−1/2N−1/2),

where

g1,NT =

[
N−1

N∑
i=1

ε′iW i(W
′
iW i)

−1wi,T+1w
′
i,T+1

]
Q̄

−1
N q̄N ,

g2,NT = N−1
N∑
i=1

ε′iW i(W
′
iW i)

−1wi,T+1w
′
i,T+1ηi.

We also note that under Assumptions 3, 4, 8 and 9

g1,NT = E(g1,nT ) +Op

(
N−1/2

)
, and g2,NT = E(g2,NT ) +Op

(
N−1/2

)
.

Hence,

N−1
N∑
i=1

(θ̂i−θi)
′wi,T+1w

′
i,T+1(θ̃−θi) = E (g1,nT )−E (g2,NT )+Op

(
N−1/2

)
+Op

(
T−1/2N−1/2

)
.

Substituting this result together with (A.18) and (A.19) in (A.17), we obtain

N−1
N∑
i=1

êi,T+1ẽi,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1ψNT +Op(N
−1/2) +Op

(
T−1/2N−1/2

)
, (A.20)
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where ψNT = T [E (g1,nT )− E (g2,NT )], or more specifically,

ψNT = TN−1
N∑
i=1

E
[
ε′iW i(W

′
iW i)

−1wi,T+1w
′
i,T+1

]
Q̄

−1
N q̄N (A.21)

−TN−1
N∑
i=1

E
[
ε′iW i(W

′
iW i)

−1wi,T+1w
′
i,T+1ηi

]
.

Finally, using (A.20), together with (19) and (22), in (31) now yields (32).

A.2.4 Proof of Proposition 4

To compare the FE forecast to the individual forecasts, rewrite (14) as êi,T+1 = εi,T+1− (α̂i − αi)−

x′
i,T+1(β̂i−βi), and note that α̂i−αi = ε̄iT −x̄′

iT

(
β̂i − βi

)
. Therefore, êi,T+1 = ¯̄εi,T+1− ¯̄x′

i,T+1(β̂i−

βi). Furthermore, êFEi,T+1 = ¯̄εi,T+1 − (β̂FE − βi)
′ ¯̄xi,T+1, where ¯̄εi,T+1 = εi,T+1 − ε̄iT and ¯̄xi,T+1 =

xiT+1 − x̄iT ,

β̂i − βi = (X ′
iMTXi)

−1X ′
iMTεi = Q−1

iT,βξiT,β,

β̂FE − βi = −ηi,β + Q̄
−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β,

QiT,β = (T−1X ′
iMTXi)

−1, ξiT,β = T−1/2X ′
iMTεi, and ξ̄NT,β = N−1

N∑
i=1

ξiT,β = Op(N
−1/2).

Hence,

N−1
N∑
i=1

êFEi,T+1êi,T+1 = N−1
N∑
i=1

¯̄ε2i,T+1 (A.22)

+N−1
N∑
i=1

(β̂i − βi)
′ ¯̄xi,T+1 ¯̄x

′
i,T+1(β̂FE − βi)

−N−1
N∑
i=1

(εi,T+1 − ε̄iT )¯̄x
′
i,T+1

[(
β̂FE − βi

)
+ (β̂i − βi)

]
.

Under Assumptions 4 and 9 we have

1

N

N∑
i=1

(
β̂FE − βi

)′
¯̄xi,T+1ε̄iT = cFENT +Op(N

−1/2).
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Additionally,

N−1
N∑
i=1

¯̄x′
i,T+1(β̂i − βi)¯̄εi,T+1 = cNT,β +Op(N

−1/2),

where cNT,β = N−1
∑N

i=1 E
[
¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
. Details are in the Online Supple-

ment, where we also show that

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

¯̄ε2i,T+1 + hNT,β − 2cNT,β +Op(N
−1/2),

where hNT,β = N−1
∑N

i=1 E
[
¯̄x′
i,T+1Q

−1
iT,β

(
X′

iMT εiε
′
iMTXi

T

)
Q−1

iT,β
¯̄xi,T+1

]
, andQiT,β = T−1 (X ′

iMTXi).

Using this, we have

N−1
N∑
i=1

¯̄εi,T+1 ¯̄x
′
i,T+1

[(
β̂FE − βi

)
+ (β̂i − βi)

]
= cFENT + cNT,β +Op(N

−1/2). (A.23)

Also

N−1
N∑
i=1

(β̂i − βi)
′ (¯̄xi,T+1 ¯̄x

′
i,T+1

)
(β̂FE − βi)

= T−1/2N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

) (
−ηi,β + Q̄

−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β

)
.

First, ξ̄NT,β = Op(N
−1/2) and Q̄

−1
NT,β = Q̄

−1
N,β +Op(N

−1/2), where Q̄N,β = E
(
Q̄NT,β

)
, (see Lemma

A.1). Hence, for a fixed T > T0

[
N−1

N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)]
Q̄

−1
NT,β ξ̄NT,β = Op(N

−1/2).

Also, under Assumption 9,

N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)
ηi,β

= N−1
N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)
ηi,β

]
+Op(N

−1/2),

A-11



and

N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)
= N−1

N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)]
+Op(N

−1/2).

Then

N−1
N∑
i=1

(β̂i − βi)
′ ¯̄xi,T+1 ¯̄x

′
i,T+1(β̂FE − βi) = T−1/2ψFE

NT +Op(T
−1/2N−1/2), (A.24)

where

ψFE
NT = N−1

N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)]
Q̄

−1
N,β q̄N,β

−N−1
N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
¯̄xi,T+1 ¯̄x

′
i,T+1

)
ηi,β

]
. (A.25)

Using (A.23) and (A.24) in (A.22) yields

N−1
N∑
i=1

êFEi,T+1êi,T+1 = N−1
N∑
i=1

¯̄ε2i,T+1 + T−1/2ψFE
NT

−
(
cFENT + cNT,β

)
+Op(N

−1/2) +Op(T
−1/2N−1/2).

Substituting this result together with (S.22) and (27) in (38) now yields equation (39).

A.3 Estimation of Combination Weights

There are three components in the forecast combination weights, given by (32), namely ∆NT , hNT

and ψNT . To establish that ∆̂NT (η̃) = N−1
∑N

i=1w
′
i,T+1η̃iη̃

′
iwi,T+1 is a consistent estimator of

∆NT , recall that

η̃i = ηi +Q−1
iT ξiT − Q̄

−1
NT q̄NT − Q̄

−1
NT ξ̄NT ,
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where

ξiT = T−1W ′
iεi = T−1

T∑
t=1

witεit = Op

(
T−1/2

)
, and ξ̄NT = N−1

N∑
i=1

ξiT = Op

(
N−1/2T−1/2

)
.

Then

∆̂NT (η̃) = N−1
N∑
i=1

w′
i,T+1η̃iη̃

′
iwi,T+1

= N−1
N∑
i=1

w′
i,T+1

(
ηi +Q−1

iT ξiT − Q̄
−1
NT q̄NT − Q̄

−1
NT ξ̄NT

)
×
(
ηi +Q−1

iT ξiT − Q̄
−1
NT q̄NT − Q̄

−1
NT ξ̄NT

)′
wi,T+1

= N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 +N−1

N∑
i=1

w′
i,T+1Q

−1
iT ξiT ξ

′
iTQ

−1
iT wi,T+1

+N−1
N∑
i=1

w′
i,T+1Q̄

−1
NT q̄NT q̄NT Q̄

−1
NTwi,T+1 +N−1

N∑
i=1

w′
i,T+1Q̄

−1
NT ξ̄NT ξ̄

′
NT Q̄

−1
NTwi,T+1

+2N−1
N∑
i=1

w′
i,T+1ηiξ

′
iTQ

−1
iT wi,T+1 − 2N−1

N∑
i=1

w′
i,T+1ηiq̄

′
NT Q̄

−1
NTwi,T+1

−2N−1
N∑
i=1

w′
i,T+1ηiξ̄

′
NT Q̄

−1
NTwi,T+1 − 2N−1

N∑
i=1

w′
i,T+1Q

−1
iT ξiT q̄

′
NT Q̄

−1
NTwi,T+1

−N−1
N∑
i=1

w′
i,T+1Q

−1
iT ξiT ξ̄

′
NT Q̄

−1
NTwi,T+1 + 2N−1

N∑
i=1

w′
i,T+1Q̄

−1
NT q̄NT ξ̄

′
NT Q̄

−1
NTwi,T+1,

and we have that

N−1
N∑
i=1

w′
i,T+1Q

−1
iT ξiT ξ

′
iTQ

−1
iT wi,T+1 = N−1

N∑
i=1

w′
i,T+1E

(
Q−1

iT ξiT ξ
′
iTQ

−1
iT

)
wi,T+1 +Op

(
N−1/2

)
E
(
Q−1

iT ξiT ξ
′
iTQ

−1
iT

)
= T−2E

(
Q−1

iT W ′
iεiε

′
iW

′
iQ

−1
iT

)
= T−1σ2iQ

−1
i

N−1
N∑
i=1

w′
i,T+1ξiT ξ

′
iTwi,T+1 = N−1

N∑
i=1

w′
i,T+1E

(
Q−1

iT ξiT ξ
′
iTQ

−1
iT

)
wi,T+1 +Op

(
N−1/2

)
= Op

(
N−1/2

)
+Op(T

−1),

N−1
N∑
i=1

w′
i,T+1Q̄

−1
NT q̄NT q̄NT Q̄

−1
NTwi,T+1 = q̄NT Q̄

−1
NT

(
N−1

N∑
i=1

wi,T+1w
′
i,T+1

)
Q̄

−1
NT q̄NT

= q̄NQ̄
−1
N q̄N +Op(N

−1/2),
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N−1
N∑
i=1

w′
i,T+1Q̄

−1
NT ξ̄NT ξ̄

′
NT Q̄

−1
NTwi,T+1 = ξ̄

′
NT Q̄

−1
NT

(
N−1

N∑
i=1

wi,T+1w
′
i,T+1

)
Q̄

−1
NT ξ̄NT = Op(N

−1T−1),

and

N−1
N∑
i=1

w′
i,T+1ηiq̄

′
NT Q̄

−1
NTwi,T+1 = q̄′NT Q̄

−1
NT

(
N−1

N∑
i=1

wi,T+1w
′
i,T+1ηi

)
= q̄NQ̄

−1
N q̄N+Op(N

−1/2).

Also since E
(
Q−1

iT ξiT |wi,T+1,ηi

)
= 0,

N−1
N∑
i=1

w′
i,T+1ηiξ

′
iTQ

−1
iT wi,T+1 = N−1

N∑
i=1

ξ′iTQ
−1
iT

(
wi,T+1w

′
i,T+1ηi

)
= Op

(
N−1/2

)
,

N−1
N∑
i=1

w′
i,T+1ηiξ̄

′
NT Q̄

−1
NTwi,T+1 = N−3

N∑
i=1

ξ′iTQ
−1
iT

(
wi,T+1w

′
i,T+1ηi

)
+Op

(
N−3

)
= Op

(
N−5/2

)
,

N−1
N∑
i=1

w′
i,T+1Q

−1
iT ξiT q̄

′
NT Q̄

−1
NTwi,T+1 = q̄′NT Q̄

−1
NT

(
N−1

N∑
i=1

(
wi,T+1w

′
i,T+1

)
Q−1

iT ξiT

)
= Op

(
N−1/2

)
,

N−1
N∑
i=1

w′
i,T+1Q

−1
iT ξiT ξ̄

′
NT Q̄

−1
NTwi,T+1 = ξ̄

′
NT Q̄

−1
NT

(
N−1

N∑
i=1

wi,T+1w
′
i,T+1Q

−1
iT ξiT

)
= Op(N

−1T−1/2),

and

N−1
N∑
i=1

w′
i,T+1Q̄

−1
NT q̄NT ξ̄

′
NT Q̄

−1
NTwi,T+1 = ξ̄

′
NT Q̄

−1
NT

(
N−1

N∑
i=1

wi,T+1w
′
i,T+1

)
Q̄

−1
NT q̄NT = Op(T

−1/2N−1/2).

Overall

∆̂NT (η̃) = N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 − q̄NQ̄

−1
N q̄N +Op

(
N−1/2

)
+Op(T

−1),

or equivalently

= N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄NQ̄

−1
N q̄N +Op

(
N−1/2

)
+Op(T

−1).

In combination, ∆̂NT (η̃) is a consistent estimator of ∆NT for large N and T . In the case of

strictly exogenous regressors, ∆̂NT (η̃) is a consistent estimator of ∆NT for a fixed T , so long as

E
(
θ̂i

)
exits, since in that case E

(
θ̂j − θj

)
= 0 for all j.
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Now consider the second component of the weights, namely hNT , and We will show that a

consistent estimator is

ĥNT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT Ĥ iTQ

−1
iT wi,T+1 = hNT +Op

(
N−1/2

)
+Op

(
ln(N)√

T

)
,

where Ĥ iT = σ̂2i T
−1
∑T

t=1witw
′
it.where σ̂

2
i =

∑T
t=1 ε̂

2
it/(T − K), instead of T−1

∑T
t=1 ε̂

2
it (witw

′
it).

Note that

ĥNT − hNT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT Ĥ iTQ

−1
iT wi,T+1,−N−1

N∑
i=1

E (siT ) ,

where siT is defined by (18). Since N−1
∑N

i=1 E (siT ) = N−1
∑N

i=1 siT +Op

(
N−1/2

)
,

ĥNT − hNT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT

[
σ̂2i T

−1
T∑
t=1

witw
′
it −

W ′
iεiε

′
iW i

T

]
Q−1

iT wi,T+1 +Op

(
N−1/2

)
= N−1

N∑
i=1

σ̂2iw
′
i,T+1Q

−1
iT wi,T+1 −N−1

N∑
i=1

w′
i,T+1Q

−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1 +Op

(
N−1/2

)
= D1,NT −D2,NT +Op

(
N−1/2

)
.

Now consider the decomposition

D1,NT = N−1
N∑
i=1

σ̂2iw
′
i,T+1Q

−1
iT wi,T+1 = N−1

N∑
i=1

σ̂2iw
′
i,T+1

(
Q−1

iT −Q−1
i +Q−1

i

)
wi,T+1

= N−1
N∑
i=1

σ̂2iw
′
i,T+1Q

−1
i wi,T+1 +N−1

N∑
i=1

σ̂2iw
′
i,T+1

(
Q−1

iT −Q−1
i

)
wi,T+1

Similarly

∥∥∥∥∥N−1
N∑
i=1

σ̂2iw
′
i,T+1

(
Q−1

iT −Q−1
i

)
wi,T+1

∥∥∥∥∥ ≤ sup
i

∥wi,T+1∥2 sup
i
σ̂2i sup

i

∥∥(Q−1
iT −Q−1

i

)∥∥ = Op

(
ln(N)√

T

)
,
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and supi
(
σ̂2i − σ2i

)
= Op

(
ln(N)√

T

)
. Hence

D1,NT = N−1
N∑
i=1

σ̂2iw
′
i,T+1Q

−1
i wi,T+1 +Op

(
ln(N)√

T

)

= N−1
N∑
i=1

σ2iw
′
i,T+1Q

−1
i wi,T+1 +N−1

N∑
i=1

(
σ̂2i − σ2i

)
w′

i,T+1Q
−1
i wi,T+1 +Op

(
ln(N)√

T

)

= N−1
N∑
i=1

σ2iw
′
i,T+1Q

−1
i wi,T+1 +Op

(
ln(N)√

T

)

Similarly, and noting that E
(
W ′

iεiε
′
iW i

T

)
= σ2iQi, we have

D2,NT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

= N−1
N∑
i=1

w′
i,T+1Q

−1
i

(
W ′

iεiε
′
iW i

T

)
Q−1

i wi,T+1 +Op

(
ln(N)√

T

)

= N−1
N∑
i=1

w′
i,T+1Q

−1
i E

(
W ′

iεiε
′
iW i

T

)
Q−1

i wi,T+1 +Op(N
−1/2) +Op

(
ln(N)√

T

)

= N−1
N∑
i=1

σ2iw
′
i,T+1Q

−1
i wi,T+1 +Op(N

−1/2) +Op

(
ln(N)√

T

)
.

Hence,

ĥNT − hNT = Op(N
−1/2) +Op

(
ln(N)√

T

)
,

as desired.

Finally, turn to ψNT . The asymptotic bias, θ̂i − θi, for each i can then be estimated using

bootstrap or half-jackknifing. The sieve bootstrap could be used for a pure panel AR model but,

generally, not with weakly exogenous regressors. However, the half-jackknife estimator can work

more generally. For a give T , split the sample in two equal parts—one observation is dropped if

T is an odd number. Denote the estimators based on the two sub-samples by θ̂ia and θ̂ib. Then

E
(
θ̂i − θi

)
can be estimated by

θ̂i −
[
2θ̂i −

1

2

(
θ̂ia + θ̂ib

)]
=

[
1

2

(
θ̂ia + θ̂ib

)
− θ̂i

]
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A consistent estimator of ψNT is then given by

ψ̂NT =

[
TN−1

N∑
i=1

[
1

2

(
θ̂ia + θ̂ib

)
− θ̂i

]′
wi,T+1w

′
i,T+1

]
Q̄

−1
NT q̄NT (η̊)

−TN−1
N∑
i=1

[
1

2

(
θ̂ia + θ̂ib

)
− θ̂i

]′
wi,T+1w

′
i,T+1η̊

Estimating the weights in combination of individual and fixed effects forecasts

Similar to the derivations above, it can be shown that the components of the weights in Proposition 4

can be estimated as follows. First,

∆̂FE
NT =

1

N

N∑
i=1

¯̄x′
i,T+1η̊i,βη̊

′
i,β

¯̄xi,T+1 − ˆ̄q′NT,β

(
η̊i,β

) ˆ̄Q−1
NT,β

ˆ̄qNT,β

(
η̊i,β

)
, (A.26)

η̊i,β = β̂i− 1
N

∑N
i=1 β̂i, ¯̄xi,T+1 = xiT+1−x̄iT ,

ˆ̄QNT,β = N−1T−1
∑N

i=1X
′
iMTXi and ˆ̄qNT,β

(
η̊i,β

)
=

N−1T−1
∑N

i=1X
′
iMTXiη̊i,β

Next,

ĥNT,β = N−1
N∑
i=1

¯̄x′
i,T+1Q

−1
iT,βH̊ iT,βQ

−1
iT,β

¯̄xi,T+1, (A.27)

H̊ iT,β = σ̂2i
1
T

∑T
t=1

¯̄xit ¯̄x
′
it, σ̂

2
i = ε̂′iε̂i/(T −K) and ε̂it = yit − θ̂

′
iwit. Furthermore,

ψ̂FE
NT = TN−1

N∑
i=1

(
β̂FE − β̂FEJK

)′
¯̄xi,T+1 ¯̄x

′
i,T+1Q̄

−1
N,β q̄N,β(η̊i,β) (A.28)

−TN−1
N∑
i=1

(
β̂FE − β̂FEJK

)′
¯̄xi,T+1 ¯̄x

′
i,T+1η̊i,β

where β̂FEJK = 2β̂FE − 1
2

(
β̂FE,a + β̂FE,b

)
is the half-jackknife estimator of Chudik et al. (2018).

Finally, the weights include the difference between

cFENT =
1

N

N∑
i=1

(
β̂FE − βi

)′
¯̄xi,T+1

¯̂εiT and ĉNT,β =
1

N

N∑
i=1

(
β̂i − βi

)′
¯̄xi,T+1

¯̂εiT .
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However,

ĉFENT − ĉNT,β =
1

N

N∑
i=1

(
β̂FE − β̂i

)′
¯̄xi,T+1

¯̂εiT = Op(T
−1)

A.4 Panel AR(1): An example of correlated heterogeneity

Correlated heterogeneity can arise in many contexts. One important example is dynamic panel data

models where, barring special cases, heterogeneity is correlated by design. As a simple example,

consider the stationary panel AR(1) case where yit = βiyi,t−1+εit, for t = . . .−2−1, 0, 1, . . . , T, T +

1, . . . , and supi |βi| ≤ c for some positive c < 1, and βi follows a random coefficient model βi = β0+ηi,

where β0 = E(βi), and ηi is suitably truncated such that the stationary condition supi |βi| ≤ c is

met.

Suppose our objective is to forecast yiT+1 based on the observations {yit, t = 0, 1, 2, . . . , T}.22 In

the context of the general linear model analyzed in the paper, wit = yi,t−1 and θi = βi. It is easily

verified that our Assumptions 1-9 cover the dynamic case where one or more elements of wit are

lagged values of yit. Forecasts based on pooled estimates, which incorrectly assume βi = β0 generate

a heterogeneity bias, ∆N , given by (A.16). In the present example qi = E
(
y2i,t−1ηi

)
, Qi = E

(
y2i,t−1

)
,

and

∆N = N−1
N∑
i=1

E
(
y2itη

2
i

)
−

[
N−1

∑N
i=1 E

(
y2i,t−1ηi

)]2
N−1

∑N
i=1 E

(
y2i,t−1

) ,

where qi measures the degree of correlated heterogeneity. To derive qi for the AR model, note that

yit =
∞∑
s=0

βsi εi,t−s =

∞∑
s=0

(β0 + ηi)
s εi,t−s, (A.29)

so yit is a non-linear function of ηi, and, in general, qi = E
(
y2i,t−1ηi

)
̸= 0. This shows that

heterogeneity in panel AR models generates correlated heterogeneity as is also implicit in the analysis

22The assumption that the process for yit has started a long time prior to date 0, is equivalent to assuming that yi0
is drawn from a distribution with zero mean and variance σ2

i /(1− β2
i ).
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of Pesaran and Smith (1995). Using (A.29) we have

E(yit) = 0, Qi = E(y2it) = E
(
y2i,t−1

)
= E

(
σ2i

1− β2i

)
, for all t,

qi = E
(
y2i,t−1ηi

)
=

∞∑
s=0

E
(
β2si ηiσ

2
i

)
= E

(
ηiσ

2
i

1− β2i

)
, and E

(
y2itη

2
i

)
= E

(
η2i σ

2
i

1− β2i

)
.

In this simple example, heterogeneity is uncorrelated only if β0 = 0 and ηi is symmetrically dis-

tributed around 0. This follows since when β0 = 0 we have qi = E
(

ηiσ
2
i

1−η2i

)
and under symmetry

ηiσ
2
i /
(
1− η2i

)
is an odd function of ηi, which yields qi = 0. But when β0 ̸= 0, then qi ̸= 0 even if

ηi has a symmetric distribution. The expression for ∆N is strictly positive irrespective of whether

qi = 0 or not. Under stationarity, ∆N simplifies to

∆AR = E
(
y2itη

2
i

)
−

[
E
(
y2i,t−1ηi

)]2
E
(
y2i,t−1

)
=

E
(

η2i σ
2
i

1−β2
i

)
E
(

σ2
i

1−β2
i

)
−
[
E
(

ηiσ
2
i

1−β2
i

)]2
E
(

σ2
i

1−β2
i

) . (A.30)

Let fi = σiηi/
√

1− β2i and gi = σi/
√

1− β2i , and note that the numerator of ∆AR can be written as

E(f2i )E(g
2
i )− [E(figi)]

2 ≥ 0, which establishes that ∆AR ≥ 0, in line with part (c) of Proposition 2.

The magnitude of ∆AR depends on the joint distribution of βi and σ
2
i . As an example, consider

the case where σ2i and βi are independently distributed, E(σ2i ) = σ2 and ηi ∼ Uniform(−a/2, a/2),

for a > 0.23 Then,

qi = σ2E

(
ηi

1− β2i

)
=
σ2

2

[
E

(
ηi

1− β0 − ηi

)
+ E

(
ηi

1 + β0 + ηi

)]

To derive the expectation in this above expression note that for a given B, such that B2−a2/4 > 0,

we have

E

(
ηi

B + ηi

)
=

1

a

∫ a/2

−a/2

(
η

B + η

)
dη = 1−

(
B

a

)
ln

(
B + a/2

B − a/2

)
. (A.31)

23Note in this case ηi is symmetrically distributed around 0.
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Table A.1: Numerical values for E
(
y2i,t−1ηi

)
and ∆AR for the panel AR(1) model

β0 E(y2i,t−1ηi) ∆AR

0.3 0.100 0.117
0.45 0.316 0.163
0.49 0.657 0.211
0.4999 1.783 0.328

Note: The numerical values are

based on a = σ2 = 1.

Using this result, and setting B = 1 + β0, we have, for (1 + β0)
2 > a2/4,

E

(
ηi

1 + β0 + ηi

)
= 1−

(
1 + β0
a

)
ln

(
1 + β0 + a/2

1 + β0 − a/2

)
.

Similarly, again for (β0 − 1)2 > a2/4,

E

(
ηi

1− β0 − ηi

)
= −E

(
ηi

β − 1 + ηi

)
= −

[
1−

(
β0 − 1

a

)
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)]
.

Overall, assuming that a/2 < 1− |β0|, we have

E
(
y2i,t−1ηi

)
=

σ2

2

[(
β0 − 1

a

)
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)
−
(
1 + β0
a

)
ln

(
1 + β0 + a/2

1 + β0 − a/2

)]
=

σ2

2a

[
− (1− β0) ln

(
1− β0 − a/2

1− β0 + a/2

)
− (1 + β0) ln

(
1 + β0 + a/2

1 + β0 − a/2

)]
. (A.32)

To ensure that |βi| = |β0 + ηi| < 1, we require that a is sufficiently small relative to β0 and |β0| < 1.

A sufficient condition for this to hold is that

|βi| = |β0 + ηi| ≤ |β0|+ |ηi| = |β0|+ a/2 < 1.

We can now calculate E
(
y2i,t−1ηi

)
for a range of values for β0 < 1/2. Using a = 1 and σ2 = 1,

we obtain the values given in Table A.1.

In general, for a > 0 and |β0| < 1, E
(
y2i,t−1ηi

)
̸= 0, E

(
y2i,t−1ηi

)
→ 0, only if a → 0. Since

ηi ∼ iidUniform(−a/2, a/2) is symmetrically distributed, then E
(
y2i,t−1ηi

)
= 0 for β0 = 0. But

Cov(y2i,t−1, η
2
i ) ̸= 0, even under symmetry and y2i,t−1 and ηi are not independently distributed. For
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example, when β0 = 0, we have

E(y2itη
2
i ) = σ2E

(
η2i

1− η2i

)
̸= E(y2it)E(η

2
i ) = σ2E

(
1

1− η2i

)
E(η2i ).

When βi and σ
2
i are independently distributed, using (A.30), we have

σ−2∆AR =
E
(

η2i
1−β2

i

)
E
(

1
1−β2

i

)
−
[
E
(

ηi
1−β2

i

)]2
E
(

1
1−β2

i

) .

We can derive an analytical expression for E
(

1
1−β2

i

)
, noting that

E

(
1

B + ηi

)
=

1

a

∫ a/2

−a/2

(
1

B + η

)
dη =

1

a
ln

(
B + a/2

B − a/2

)
.

Hence,

E

(
1

1− β2i

)
=

1

2

[
−E

(
1

−1 + β0 + ηi

)
+ E

(
1

1 + β0 + ηi

)]
= − 1

2a
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)
+

1

2a
ln

(
β0 + 1 + a/2

β0 + 1− a/2

)
,

or

E

(
1

1− β2i

)
=

1

2a

[
ln

(
1 + β0 + a/2

1 + β0 − a/2

)
− ln

(
1− β0 − a/2

1− β0 + a/2

)]
. (A.33)

Using (A.33) and simulated values of E
(

ηi
1−β2

i

)
and E

(
η2i

1−β2
i

)
, we obtain the values of ∆AR for

α = 1 and σ2 = 1 that are reported in Table A.1 for 10, 000 replications.
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S.1 Introduction

This supplementary appendix provides additional material underpinning the analysis in the main

paper along with a set of extensions to the Monte Carlo simulations and empirical results. We

begin by deriving in Section S.2 the pooled R-squared, PR2
N , used in the Monte Carlo simulations

to target the predictive power of our panel forecasting models. We characterize PR2
N as a function

of the underlying parameters of the DGPs and use this to calibrate the parameters used in the

simulations. Next, Section S.3 provides details of how we implement the estimators used in our

analysis. Section S.4 provides additional simulation and empirical results.

S.2 Derivation of the pooled R-squared PR2
N

Consider the panel data model

yit = αi + βiyi,t−1 + γixit + εit, (S.1)

xit = µxi + ξit, ξit = ρxiξi,t−1 + σxi

√
1− ρ2xiνit.

Further, Var(εit) = 1, and Var(νit) = 1 as set out in further detail in Section 5. To simplify

the derivations, we treat xit as strictly exogenous (no feedback from yi,t−1) and assume that yit is

stationary and started a long time in the past. To deal with the heterogeneity across the different

equations in the panel, we use the following average measure of fit, for a given N ,

PR2
N = 1−

N−1
∑N

i=1Var (εit |θi, xit )

N−1
∑N

i=1Var(yit |θi, xit, )
, (S.2)

where as before θi = (αi, βi, γi)
′. For the numerator we have

Var
(
εit
∣∣ θi, σ

2
i , xit

)
= σ2i . (S.3)
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To derive Var(yit |θi, xit ), we note that

Var(yit
∣∣θi, σ

2
i , xit ) = E

[
Var(yit

∣∣θi, σ
2
i ,yi,t−1, xit )

]
+Var

[
E(yit

∣∣θi, σ
2
i , yi,t−1, xit )

]
,

E(yit
∣∣θi, σ

2
i , yi,t−1, xit ) = αi + βiyi,t−1 + γixit, Var(yit

∣∣θi, σ
2
i , yi,t−1, xit ) = σ2i ,

Var
[
E(yit

∣∣θi, σ
2
i , yi,t−1, xit )

]
= β2i Var(yit

∣∣θi, σ
2
i , xit ) + γ2i Var (xit) .

Hence,

Var(yit
∣∣θi, σ

2
i , xit ) =

γ2i Var(ξit) + σ2i
1− β2i

. (S.4)

Now using (S.3) and (S.4) in (S.2), we obtain

PR2
N = 1−

 N−1
∑N

i=1 σ
2
i

N−1
∑N

i=1
γ2
i σ

2
xi+σ2

i

1−β2
i

 ,

where σ2xi = Var(ξit). After some simplifications we have

PR2
N =

bN + (cN − aN )

bN + cN
, (S.5)

where aN = N−1
∑N

i=1 σ
2
i , bN = N−1

∑N
i=1

γ2
i σ

2
xi

1−β2
i
, and cN = N−1

∑N
i=1

σ2
i

1−β2
i
.

When these parameters are distributed independently, as N → ∞, we obtain

aN
p→ E(σ2i ), bN

p→ E(γ2i )E(σ
2
xi)E

(
1

1− β2i

)
,

cN
p→ E(σ2i )E

(
1

1− β2i

)
.

Hence, using (S.5), we note that (as N → ∞)

PR2
N → PR2 =

E(γ2i )E(σ
2
xi)E

(
1

1−β2
i

)
+
[
E(σ2i )E

(
1

1−β2
i

)
− E(σ2i )

]
E(γ2i )E(σ

2
xi)E

(
1

1−β2
i

)
+ E(σ2i )E

(
1

1−β2
i

) .
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Under our design E(σ2i ) = 1, E(σ2xi) = 1, and the above expression simplifies to

PR2 =
E(γ2i )E

(
1

1−β2
i

)
+
[
E
(

1
1−β2

i

)
− 1
]

E(γ2i )E
(

1
1−β2

i

)
+ E

(
1

1−β2
i

) . (S.6)

In the general case where σ2i is not distributed independently of βi and N is finite we have

PR2
N > 1− aN/cN = 1−

N−1
∑N

i=1 σ
2
i

N−1
∑N

i=1
σ2
i

1−β2
i

.

In the case where βi = β0 + ηiβ, and ηiβ ∼ iid Uniform(−αβ/2, αβ/2), αβ > 0, we have (see also

(A.33) in the Appendix to the paper):

E
(

1
1−β2

i

)
= 1

aβ

∫ aβ/2

−aβ/2
1

1−(β0+ηβ)
2dηβ

= 1
2aβ

∫ aβ/2

−aβ/2

[
1

1+β0+ηβ
+ 1

1−β0−ηβ

]
dηβ

= 1
2aβ

[ln(1 + β0 + ηβ)− ln(1− β0 − ηβ)]
aβ/2

−aβ/2

= 1
2aβ

[
ln
(
1+β0+aβ/2
1+β0−aβ/2

)
− ln

(
1−β0−aβ/2
1−β0+aβ/2

)]
,

(S.7)

assuming that

(1 + β0 + aβ/2) (1 + β0 − aβ/2) > 0 and (1− β0 − aβ/2) (1− β0 + aβ/2) > 0,

or if

0 ≤ aβ < 2 (1− |β0|) . (S.8)

It is easily established that E
(

1
1−β2

i

)
→ 1

1−β2
0
, as aβ → 0.

Our Monte Carlo simulations target an PR2 of 0.6. We do so by calibrating the values of the aβ

and β0 parameters. The values of the parameters used to this end are reported in Table S.1.

S.3 Details of the estimators

This section provides details on the implementation of the estimators and forecasts used in the

Monte Carlo experiments and empirical applications. Recall that the DGP, (47), in the Monte Carlo
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Table S.1: PR2 for parameters of Monte Carlo models

aβ β0 PR2
ARX(ργx = 0) PR2

ARX(ργx = 0.5)

0 0.775 0.605 0.605
0.5 0.688 0.640 0.651
1 0.486 0.669 0.686

Note: The table reports the parameters for aβ and β0 in

the first two columns and the implied values for PR2 in the

remaining columns.

experiments is

yit = αi + βiyi,t−1 + γixit + εit = αi + β′
ixit + εit = θ′

iwit + εit, εit ∼ (0, σ2i ), (S.9)

for t = 1, 2, . . . , T and i = 1, 2, . . . , N , where βi = (βi, γi)
′, θi = (αi,β

′
i)
′, xit = (yi,t−1, xit)

′, and

wit = (1,x′
it)

′. Here we consider a more general case where the dimension of xit is k× 1 and that of

wit is K × 1, where K = k + 1. In principle, xit could include higher order lags of yit and xit, and

other covariates. As in the main analysis, for simplicity we do not explicitly refer to the forecast

horizon, h, but it is assumed that xit contains information known at time t− h. Below we assume

a forecast horizon of h = 1.

Individual forecasts The individual-specific forecasts based on the data of a given cross-sectional

unit are

ŷi,T+1 = α̂i,T + β̂
′
i,Txi,T+1 = θ̂

′
i,Twi,T+1 (S.10)

The parameters are estimated using the estimation sample containing T observations: yi =

(yi1, yi2, . . . , yiT )
′ and Xi = (xi1,xi2, . . . ,xiT )

′. In matrix notation, the model is

yi = αiτT +Xiβi + εi = W iθi + εi,

where τ is a T×1 unit vector,W i = (wi1,wi2, . . . ,wiT )
′,wit = (1,x′

it)
′, and εi = (εi1, εi2, . . . , εiT )

′.

The parameters are estimated as

β̂i,T =
(
X ′

iMTXi

)−1
XiMTyi,
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α̂i,T =
(
τ ′
TM ixτT

)−1
τ ′
TM ixyi,

MT = IT − τT

(
τ ′
TτT

)−1
τ ′
T , M ix = IT −Xi

(
X ′

iXi

)−1
X ′

i.

Written in more compact form, we have

θ̂i,T =
(
W ′

iW i

)−1
W ′

iyi. (S.11)

The “individual” forecasts in (S.10), for i = 1, 2, . . . , N , will be used as the reference forecast

and the MSFE of all other methods are reported as ratios relative to the MSFE of this forecast,

defined by

MSFEref = N−1
N∑
i=1

(
yi,T+1 − θ̂

′
i,Twi,T+1

)2
. (S.12)

Pooled forecasts The forecasts that use the pooled information of all units in the panel are

ỹi,T+1 = θ̃
′
poolwi,T+1, (S.13)

where

θ̃pool =
(
W ′W

)−1
Wy =

(
N∑
i=1

W ′
iW i

)−1 N∑
i=1

W ′
iyi, (S.14)

and W = (W ′
1,W

′
2, . . . ,W

′
N )′ and y = (y′

1,y
′
2, . . . ,y

′
N )′.

Fixed effects forecast The FE forecasts are given by

ŷFE
i,T+1 = α̂i,FE + β̂

′
FExi,T+1, (S.15)

where

β̂FE =

(
N∑
i=1

X ′
iMTXi

)−1 N∑
i=1

X ′
iMTyi,
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and

α̂i,FE = τ ′
T (yi − β̂

′
FEXi)/T

Goldberger’s random effects BLUP This forecast uses the best linear unbiased predictor (BLUP)

of Goldberger (1962). For this forecast, the model is assumed to be as follows:

yi,t+1 = α+ β′xi,t+1 + εi,t+1,

where εi,t+1 = ηi + ui,t+1. The BLUP forecasts are given as

ŷRE
i,T+1 = α̂RE + β̂

′
RExi,T+1 +

T σ̂2η
T σ̂2η + σ̂2u

¯̂εi, (S.16)

where ε̂i = T−1
∑T

t=1 ε̂it and ε̂it = yit − α̂RE − x′
itβ̂RE. α̂RE, and β̂RE are estimated by GLS

using

Σ̂
−1

= σ̂−2
u (MT + ρ̂P T )

where P T = IT −MT , ρ̂ = σ̂2u/(T σ̂
2
η + σ̂2u),

σ̂2u =
1

N(T − 1)−K

N∑
i=1

(yi − α̂i,FE −Xiβ̂FE)
′MT (yi − α̂i,FE −Xiβ̂FE)

σ̂2η =
1

N −K

N∑
i=1

(ȳi − β̂
′
FEx̄i)

2 − σ̂2u/T,

β̂RE =

[
1

NT

N∑
i=1

X ′
iMTXi +

ρ̂

N

N∑
i=1

(x̄i − x̄) (x̄i − x̄)′
]−1

×[
1

NT

N∑
i=1

X ′
iMTyi +

ρ̂

N

N∑
i=1

(x̄i − x̄) (ȳi − ȳ)′
]
,
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and α̂RE = ȳ − β̂
′
REx̄, where

x̄i = T−1
T∑
t=1

xi,t, x̄ = N−1
N∑
i=1

x̄i, ȳi = T−1
T∑
t=1

yit, ȳ = N−1
N∑
i=1

ȳi.

See Baltagi (2013, pp. 999–1001) and Pesaran (2015, pp. 646–649) for further details.

Combination of individual and pooled forecasts

ŷci,T+1 = ω̂∗
NT ŷi,T+1 + (1− ω̂∗

NT )ỹi,T+1,

where ŷi,T+1 and ỹi,T+1 are the individual and pooled forecasts in (S.10) and (S.13) with

weights

ω̂∗
NT =

∆̂NT − T−1ψ̂NT

∆̂NT + T−1ĥNT − 2T−1ψ̂NT

,

where ∆̂NT , ψ̂NT , and ĥNT are given by (40), (43) and (41).

Combination of individual and FE forecasts

y∗i,T+1(ω̂
∗
FE,NT ) = ω̂∗

FE,NT ŷi,T+1 + (1− ω̂∗
FE,NT )ŷi,T+1,FE,

where ŷi,T+1 and ŷi,T+1,FE are the individual and FE forecasts in (S.10) and (S.15) with the

weight

ω̂∗
FE,NT =

∆̂FE
NT − T−1ψ̂FE

NT

∆̂FE
NT + T−1ĥNT,β − 2T−1ψ̂FE

NT

.

∆̂FE
NT , ψ̂

FE
NT , and ĥNT,β are given by (A.26), (A.28), and (A.27).

Combination with individual weights

ŷci,T+1 = ω̂∗
i ŷi,T+1 + (1− ω̂∗

i )ỹi,T+1,

where ŷi,T+1 and ỹi,T+1 are the individual and pooled forecasts in (S.10) and (S.13) with
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weights

ω∗
i =

w′
i,T+1Ω̂ηwi,T+1

w′
i,T+1(T

−1σ̂2iQ
−1
iT + Ω̂η)wi,T+1

where Ω̂η = N−1
∑N

i=1(θ̂i − ¯̂
θ)(θ̂i − ¯̂

θ)′,
¯̂
θ = N−1

∑N
i=1 θ̂i, and the estimator of σ̂2i is given in

Pesaran et al. (2022).

Empirical Bayes forecast The empirical Bayes forecast using the estimator of Hsiao et al. (1999)

is ŷEB
i,T+1 = θ̂

′
i,EBwi,T+1, where

θ̂
′
i,EB = (σ̂−2

i W ′
iW i + Ω̂

−1
η )−1(σ̂−2

i W ′
iyi + Ω̂

−1
η

¯̂
θ),

¯̂
θ =

1

N

N∑
i=1

θ̂i,T , σ̂2i = ε̂′iε̂i/(T −K),

Ω̂η =
1

N

N∑
i=1

(θ̂i,T − ¯̂
θ)(θ̂i,T − ¯̂

θ)′,

and ε̂ = yi −W iθ̂i,T with θ̂i,T given in (S.11).

Hierarchical Bayesian forecast In this supplement, we additionally apply the hierarchical Bayesian

model of Lindley and Smith (1972) which assumes εit ∼ iidN(0, σ2), using the following priors:

θi ∼ N(θ̄,Σθ),

θ̄ ∼ N(d,Sθ̄),

Σ−1
θ ∼ Wishart(νΣ, (νΣSΣ)

−1),

σ2 ∼ invGamma(νσ/2, νσs
2/2).

The Gibbs sampler uses the conditional posteriors (Gelfand et al., 1990) as set out below, where

|· denotes conditional on the other parameters in the Gibbs sampler, for rb = 1, 2, . . . , Rb, where

Rb denotes the number of random draws used in the Gibbs sampler:

• θi,rb |· ∼ N(bi,Si), where bi = Si

(
σ−2
rb−1W

′
iyi +Σ−1

θ, rb−1θ̄rb−1

)
,

and Si =
(
σ−2
rb−1W

′
iW i +Σ−1

θ, rb−1

)−1
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• σ2rb |· ∼ invGamma
(
[NT + νσ]/2,

1
2

[∑N
i=1(yi −W iθi,rb)

′(yi −W iθi,rb) + νσs
2
])

• θ̄rb |· ∼ N(h,Sh), where h = Sh

(
Σ−1

θ,rb−1

∑N
i=1 θi,rb + S−1

θ̄
d
)
and Sh =

(
NΣ−1

θ,rb−1 + S−1
θ̄

)−1

• Σ−1
θ,rb

|· ∼ Wishart

(
N + νΣ,

[∑N
i=1

(
θi,rb − θ̄rb

) (
θi,rb − θ̄rb

)′
+ νΣSΣ

]−1
)

The Gibbs sampler draws iteratively from the conditional posterior distributions, starting with

the following initial values (rb = 0)

σ20 = ε̂′ε̂/(NT −K), ε̂ = (ε̂1, ε̂2, . . . , ε̂N )′, ε̂i = yi −W iθ̂i,T

θ̄0 =
1

N

N∑
i=1

θ̂i,T , and Σ−1
θ,0 =

1

N

N∑
i=1

(θ̂i,T − θ̄0)(θ̂i,T − θ̄0)
′.

Estimates from the Gibbs sampler are obtained from 1500 iterations with the first 500 discarded

as a burn-in sample. In each iteration, we calculate

ŷHB
i,T+1,rb

= θ̂
′
i,rb

wi,T+1, (S.17)

for i = 1, 2, . . . , N and the forecast is then ŷHB
i,T+1 =

1
Rb

∑Rb
rb=1 ŷ

HB
i,T+1,rb

.

We use the following hyperpriors: d = 0, νΣ = K, νσ = 0.1, and s2 = 0.1. For the prior

covariance matrices Sθ̄ and SΣ we provide the results for three settings: (1) Sθ̄ = IK106,

SΣ = IK10, (2) Sθ̄ = IK102, SΣ = IK102, and (3) Sθ̄ = IK , SΣ = IK . These are proper,

weakly informative priors that avoid the use of uninformative priors that appear to be difficult

to attain in hierarchical models (Gelman, 2006).

Monte Carlo results for the hierarchical Bayesian model are given in Table S.2. Since the MCMC

approach to the hierarchical Bayesian model is computationally quite expensive, we restrict the

Monte Carlo experiments to 1000 iterations and report some of the remaining methods as a reference.

It can be seen from the table that the accuracy of the forecasts largely depends on the serendipitous

choice of the prior.

Results for the applications are reported in Table S.5. The results suggest that the choice of

prior for the error variance has relatively little influence, whereas the prior choices for the parameter

covariances can substantially alter the forecast accuracy.
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S.4 Additional Monte Carlo applications and empirical results

In Section 5, we restricted our analysis to the case of N = 100. The results for N = 1000 can be

found in Table S.3. The results from N = 100 clearly carry over and the influence of the number of

cross-section units is small.

As a practical alternative to the combination forecasts in Section 4, which are based on estimates

of the optimal combination weights, forecast combinations using equal weights have a long history in

the literature (Timmermann, 2006). We therefore considered how this forecast combination scheme

performs both in the Monte Carlo simulations and for the empirical applications. As in the paper, we

separately consider combination schemes for the individual-pooled forecasts and for the individual-

FE forecasts.

In Section S.4 of the Supplementary Appendix (Tables S.5-S.8) we also report a complete suite

of Monte Carlo simulation results based on an equal-weighted combination scheme for our two com-

bination schemes. The predictive accuracy of the equal-weighted combination scheme is comparable

to that of the combinations based on estimated weights in the presence of modest levels of parameter

heterogeneity. Conversely, equal-weighted combinations underperform forecast combinations with

estimated weights when the level of parameter heterogeneity is either very low or very high. In

either case, one approach (individual estimation or pooling) dominates the other by a sufficiently

large margin that equal-weighting becomes sub-optimal.

We also considered the performance of an (infeasible) oracle combination scheme that uses the

true parameter values to compute the optimal combination weights. Compared against our feasible

estimates of the combination weights, this oracle scheme shows the impact of parameter estimation

error on forecasting performance. We find that the cost of estimation error is only sizable if T is

small (T = 20) and the parameters are homogeneous. For this case, the oracle scheme reduces

the MSFE of the pooled-individual combination by 0.051 (0.906 versus 0.856) and by 0.037 for the

FE-individual combination. Differences are much smaller (0.005 and 0.011) in the heterogeneous

case even when T = 20 and are further reduced for T = 100 where, in many cases, only the third

decimal of the MSFE ratio is affected.

Overall, we conclude from these Monte Carlo simulations that the optimal forecast combination

scheme introduced in our paper produces more accurate forecasts that are notably more robust to
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Table S.4: Monte Carlo results for equally weighted and Oracle forecasts

aβ σ2α eq.weight(pool) eq.weight(pool) Oracle(pool) Oracle(FE)
T 20 50 100 20 50 100 20 50 100 20 50 100

Conditional on κi = 0

N = 100, ργx = 0
0.0 0.5 0.888 0.977 0.995 0.950 0.992 0.998 0.872 0.983 0.997 0.944 0.995 0.999
0.5 0.5 0.886 0.976 0.994 0.970 0.999 1.001 0.869 0.980 0.996 0.968 0.999 1.003
1.0 1.0 0.860 0.968 0.990 1.038 1.036 1.020 0.857 0.974 0.994 1.017 1.021 1.016

N = 100, ργx = 0.5
0.0 0.5 0.887 0.976 0.995 0.950 0.992 0.998 0.870 0.982 0.997 0.944 0.995 0.999
0.5 0.5 0.885 0.975 0.993 0.970 0.999 1.001 0.870 0.980 0.996 0.968 0.999 1.003
1.0 1.0 0.860 0.968 0.990 1.041 1.038 1.022 0.853 0.973 0.994 1.020 1.022 1.017

N = 1000, ργx = 0
0.0 0.5 0.886 0.976 0.994 0.947 0.991 0.998 0.870 0.983 0.997 0.938 0.993 0.999
0.5 0.5 0.881 0.974 0.992 0.963 0.997 1.000 0.861 0.979 0.996 0.961 0.998 1.003
1.0 1.0 0.877 0.970 0.990 1.016 1.024 1.015 0.876 0.975 0.993 1.006 1.015 1.015

N = 1000, ργx = 0.5
0.0 0.5 0.886 0.976 0.994 0.947 0.991 0.998 0.868 0.982 0.997 0.938 0.993 0.999
0.5 0.5 0.880 0.972 0.991 0.963 0.998 1.000 0.864 0.978 0.995 0.961 0.998 1.003
1.0 1.0 0.877 0.970 0.989 1.017 1.024 1.015 0.895 0.978 0.993 1.006 1.015 1.015

Conditional on κi = ±1

N = 100, ργx = 0
0.0 0.5 0.744 0.935 0.989 0.826 0.948 0.980 0.712 0.934 0.982 0.758 0.929 0.973
0.5 0.5 0.773 0.974 1.032 0.885 0.997 1.026 0.771 0.966 0.994 0.881 0.987 1.008
1.0 1.0 0.806 1.042 1.113 1.037 1.120 1.129 0.861 0.991 1.002 0.997 1.045 1.049

N = 100, ργx = 0.5
0.0 0.5 0.745 0.939 0.994 0.826 0.948 0.980 0.719 0.939 0.984 0.758 0.929 0.973
0.5 0.5 0.778 0.981 1.040 0.888 1.000 1.028 0.782 0.972 0.996 0.884 0.989 1.009
1.0 1.0 0.810 1.048 1.119 1.043 1.125 1.131 0.847 0.989 1.002 1.003 1.048 1.051

N = 1000, ργx = 0
0.0 0.5 0.748 0.936 0.988 0.829 0.949 0.980 0.717 0.936 0.982 0.761 0.930 0.973
0.5 0.5 0.774 0.978 1.036 0.884 1.003 1.033 0.777 0.969 0.995 0.883 0.990 1.011
1.0 1.0 0.831 1.059 1.123 1.042 1.133 1.146 0.914 1.126 1.163 0.997 1.045 1.052

N = 1000, ργx = 0.5
0.0 0.5 0.748 0.939 0.993 0.829 0.949 0.980 0.723 0.939 0.984 0.761 0.930 0.973
0.5 0.5 0.771 0.976 1.035 0.881 0.998 1.028 0.785 0.995 1.024 0.879 0.988 1.009
1.0 1.0 0.823 1.049 1.113 1.032 1.121 1.132 0.918 1.105 1.136 0.993 1.041 1.047

Notes: The results are for equal weighted combinations of individual and pooled forecasts and for individual and FE forecasts,
and for combinations using oracle weights, which use the disturbances and parameteres for the construction of the weights.
For further details see the footnote of Table 1.



parameter heterogeneity than the equal-weighted combination schemes considered here.

Table S.5 shows the performance of the equal-weighted forecasts for the application to house price

inflation. For comparison, we also show the forecasting results for our optimal combination scheme.

In this application pooling beats individual forecasts, which suggests a low degree of parameter

heterogeneity. The equal-weighted forecast combinations perform correspondingly well. In fact, the

combination of individual and pooled forecasts has the lowest average MSFE, offers the most precise

forecasts for 10.2% (SAR model) and 14.9% (SARX) of MSAs and never produces the worst forecast.

This performance is marginally better than that of the optimal combination schemes with estimated

weights.

The results for the CPI application in Table S.5 show that in a similar fashion the equal-weighted

combination provides precise forecasts, which are more accurate, on average, than the optimal fore-

cast combination, though beaten by a small margin by the empirical Bayes forecasts.

Table S.6 shows the results from the panel and individual DM test statistics. For both applica-

tions, the panel DM test show significant improvements over the individual forecasts. For the house

price applications, somewhat fewer forecasts for MSAs are significantly better than the individual

forecast compared to what we find for the optimal combination scheme. For the CPI application,

in contrast, the pooled forecast with equal weights is significantly more precise than the benchmark

for slightly more series than under the optimal combination scheme.

S.5 Derivation of results for fixed effect estimation

Following the derivations for the pooled estimates, it is easily seen that

β̂FE − βi = −ηi,β + Q̄
−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β,

where ηi,β = βi − β, ξ̄NT,β = N−1
∑N

i=1 T
−1X ′

iMTεi,

Q̄NT,β = N−1
N∑
i=1

T−1X ′
iMTXi, and q̄NT,β = N−1

N∑
i=1

(
T−1X ′

iMTXi

)
ηi,β.

With one exception, the derivation of the average MSFE for the FE estimation closely parallels

the case of the pooled estimator with ηi,β in place of ηi, Q̄NT,β replacing Q̄NT , q̄NT,β replacing
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Table S.6: Diebold-Mariano test statistics for equal predictive accuracy: equal weights forecasts

hier.Bayes (1) hier.Bayes (2) hier.Bayes (3) eq.weights(pool) eq.weights(FE)

House Prices: all forecasts

Panel DM −29.58 −29.83 −28.00 −26.76 −25.20
DM < −1.96/DM > 1.96 202/1 207/1 186/1 158/0 148/1

CPI: all forecasts

Panel DM −13.15 −10.12 −17.78 −11.53 −10.76
DM < −1.96/DM > 1.96 112/8 90/3 94/8 79/14 79/9

Notes: The table reports the DM statistics for the three hierarchical Bayesian forecasts and the two equally weighted forecasts,
where the first combines individual and pooled forecasts and the second individual and FE forecasts. For further details see the
footnote of Table 3.

q̄NT , ξ̄NT,β replacing ξ̄NT , and ¯̄xi,T+1 = xi,T+1 − x̄iT in place of xi,T+1. The exception arises

due to the fact that in the case of weakly exogenous regressors, ε̄iT (and hence ¯̄εi,T+1) is not

distributed independently of (β̂FE − βi)
′ ¯̄xi,T+1. To account for this dependence, we first note that,

under Assumption 7, ξ̄NT,β = Op

(
N−1/2

)
, and

N−1
N∑
i=1

(
β̂FE − βi

)′
¯̄xi,T+1ε̄iT = N−1

N∑
i=1

(
−ηi,β + Q̄

−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β

)′
¯̄xi,T+1ε̄iT

= −N−1
N∑
i=1

η′
i,β

¯̄xi,T+1ε̄iT + q̄′NT,βQ̄
−1
NT,β

(
N−1

N∑
i=1

¯̄xi,T+1ε̄iT

)
+Op

(
N−1/2

)
.

Also, under Assumptions 4 and 9 we have

1

N

N∑
i=1

(
β̂FE − βi

)′
¯̄xi,T+1ε̄iT = cFENT +Op(N

−1/2). (S.18)

The expression for cFENT simplifies somewhat by noting that under Assumption 2, E (xiT+1ε̄iT ) = 0,

and using Lemma A.1 we have q̄′NT,βQ̄
−1
NT,β = q̄′N,βQ̄

−1
N,β+Op

(
N−1/2

)
. Note that under Assumption

6, ηi,β and εit are independently distributed. Using these results, the MSFE under fixed effects

estimation in (27) follows.

A comparison of forecasts based on individual and fixed effects estimates

Since,

êi,T+1 = ¯̄εi,T+1 − ¯̄x′
i,T+1(β̂i − βi). (S.19)

S-17



The derivation of the average MSFE, N−1
∑N

i=1 ê
2
i,T+1 can now proceed as before, except that under

weak exogeneity the two components of êi,T+1, in (S.19), are no longer independently distributed

and, as in the FE estimation, we need to consider the additional term

N−1
N∑
i=1

¯̄x′
i,T+1(β̂i − βi)¯̄εi,T+1 = N−1

N∑
i=1

¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεi ¯̄εi,T+1

= −N−1
N∑
i=1

¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT +Op(N

−1/2).

Using this, we have

N−1
N∑
i=1

¯̄x′
i,T+1(β̂i − βi)¯̄εi,T+1 = cNT,β +Op(N

−1/2), (S.20)

where

cNT,β = N−1
N∑
i=1

E
[
¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
. (S.21)

Taking this term into account we obtain

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

¯̄ε2i,T+1 + hNT,β − 2cNT,β +Op(N
−1/2), (S.22)

where

hNT,β = N−1
N∑
i=1

E

[
¯̄x′
i,T+1Q

−1
iT,β

(
X ′

iMTεiε
′
iMTXi

T

)
Q−1

iT,β
¯̄xi,T+1

]
, (S.23)

and QiT,β = T−1 (X ′
iMTXi). As with the term cFENT in the average MSFE of the FE forecasts,

cNT,β = 0 when xit is strictly exogenous. To see why this is so, note that in this case, E (εiε̄iT |Xi ) =

(σ2i /T )τT and

E
[
¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT |Xi

]
= ¯̄x′

i,T+1(X
′
iMTXi)

−1X ′
iMTE [εiε̄iT |Xi, ¯̄xi,T+1 ] = 0,

so unconditionally E
[
¯̄x′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
= 0, and cNT,β = 0.

Apart from the error term, εi,T+1− ε̄iT , which is common to the individual and FE forecasts, the
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squared forecast errors are analogous to those in the comparison of individual and pooled forecasts

except that we work with demeaned data and allow for the additional terms cFENT and cNT,β if the

regressors are weakly exogenous.
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