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1 Introduction

Panel data sets on economic and financial variables are widely available at individual, firm, industry,
regional, and country granularities and have been extensively used for estimation and inference.
Yet, panel estimation methods have had a comparatively lower impact on common practices in
economic forecasting, which remain dominated by unit-specific forecasting models or low-dimensional
multivariate models such as vector autoregressions (Hsiao, 2022). The relative shortage of panel
applications in the economic forecasting literature is, in part, a result of the absence of a deeper
understanding of the determinants of forecasting performance for different panel estimation methods
and the absence of guidelines on which methods work well in different settings.

In this paper, we examine existing approaches and develop novel forecast combination meth-
ods for panel data with possibly correlated heterogeneous parameters. We conduct a systematic
comparison of their predictive accuracy in settings with different cross-sectional (N) and time (7')
dimensions and varying degrees of parameter heterogeneity, whether correlated or not. Our analysis
provides a deeper understanding of the determinants of the performance of these methods across a
variety of settings chosen for their relevance to economic forecasting problems. This includes the
important choice of whether to use pooled versus individual estimates, or perhaps a combination of
the two approaches, with a focus on forecasting rather than parameter estimation and inference.

We begin by exploring analytically the bias-variance trade-off between individual, fixed effects
(FE), and pooled estimation for forecasting. Our analysis is conducted in a general setting that allows
for weakly exogenous regressors and correlated heterogeneity, consistent with the type of dynamic
panel models commonly used in empirical applications. We show how such effects contribute to the
mean squared forecast error (MSFE) of forecasts based on individual, FE, and pooled estimates.

We next examine forecast combination methods. Estimation errors are well-known to lead to
imprecisely estimated combination weights for data with a small time-series dimension. Our main
combination scheme assumes homogeneous weights across individual variables. This allows us to
use cross-sectional information to reduce the effect of estimation error on the combination weights
compared to the conventional combination scheme that lets the weights be individual-specific, which
we also consider. To handle cases where the pooling estimator imposes too much homogeneity, we

also consider combinations based on forecasts from the individual-specific and fixed effect estimators.



Our theoretical analysis of the individual and pooled estimation schemes focuses on the case with
finite T and N — oo and does not require that v N /T — 0 as N and T' — o0, jointly, which is often
assumed in the literature. The estimation of the combination weights, however, requires T — oo,
but at a much slower rate compared to N.

Finally, we consider forecasts based on the empirical Bayesian (EB) approach of Hsiao et al. (1999).
These are related to forecast combination and we show for the empirical Bayes estimator that it can
be thought of as a weighted average of an estimator that allows for full heterogeneity and a pooled
mean group estimator. The empirical Bayes scheme assigns greater weight to the pooled estimator,
the lower the estimated degree of parameter heterogeneity and so adapts to the degree of parameter
heterogeneity characterizing a given data set.!

We evaluate the predictive accuracy of these alternative panel forecasting methods through Monte
Carlo simulations. The simulations explore the importance to forecasting performance of the degree
of parameter heterogeneity, how correlated it is, whether it affects intercepts or slopes, the value of
the regressors in the forecast period, and dimensions of N and 7'. In the scenario with homogeneous
parameters, forecasts based on pooled estimates are most accurate. Forecasts based on fixed or
random effect estimates perform well, relative to other methods, when parameter heterogeneity is
confined to the intercepts and does not affect slopes. Outside these cases, empirical Bayes and
forecast combinations produce the most accurate forecasts and are better able to handle parameter
heterogeneity, whether correlated or not, while being more robust in cases with a small 7" than the
individual-specific approach.

Next, we consider two empirical applications selected to represent varying degrees of hetero-
geneity and predictive power of the underlying forecasting models. Our first application considers
predictability of house prices across 362 US metropolitan statistical areas (MSAs). In this applica-
tion, individual-specific forecasts perform quite poorly, producing the highest MSFE values among
all methods for more than 50% of the MSAs. Forecasts based on pooled estimates perform notably
better and, across all forecasts, reduce the average MSFE value by 8% relative to the forecasts based
on individual estimates, though this gets reversed if the regressor set is close to the sample average.

Empirical Bayes and forecast combinations work even better in this application, beating forecasts

n the Online Supplement we also report results based on the hierarchical Bayesian approach of Lindley and Smith
(1972), Lee and Griffith (1979), and Maddala et al. (1997).



based on individual estimates for over 90% of MSAs while almost never generating the least accurate
forecasts for individual series.

Our second application considers forecasts for a panel containing 187 subcategories of CPI infla-
tion. In this application, forecasts based on individual estimates generate the highest MSFE-values
for 44% of the series. Forecasts based on pooled estimates produce the highest MSFE-values for
40% of the individual series but, conversely, generate the lowest MSFE-values for 20% of the series.
Combination forecasts produce lower MSFE values for 73-97% of the individual CPI series than the
individual forecasts while almost never generating the largest MSFE value. Even better inflation
forecasts are produced by the empirical Bayes method which is more accurate (in the MSFE sense)
than the individual forecasts for 98% of the series and generates the lowest MSFE values for 39% of
the individual variables while never generating the largest MSFE value.

Overall, forecasts that use only the information on a given unit tend to have loss distributions
with wide dispersion across units. Their associated forecasts are therefore sometimes the best but
far more often the worst, and their distribution of MSFE performance is often shifted to the right,
implying larger losses on average than for other methods. Forecasts based on pooling, random
effects, or fixed effects estimation tend to perform better, on average, than the individual forecasts
whose accuracy they beat for the majority of series. However, relative to the individual-specific
forecasts, these approaches also tend to have a right-skewed MSFE distribution, suggesting a high
risk of poor forecasting performance for individual series whose model parameters are very different
from the average. Combinations and Empirical Bayes forecasts have narrower MSFE distributions
across units, often shifted to the left as they are centered around a smaller average loss, and rarely
produce the largest squared forecast error among all methods we consider.

Related literature: The review articles by Baltagi (2008, 2013) consider the forecasting per-
formance of the best linear unbiased predictor (BLUP) of Goldberger (1962) in models with either
fixed effects or random effects. The BLUP estimator gives rise to a generalized least squares (GLS)
predictor which Baltagi compares to models that allow for autoregressive moving average (ARMA)
dynamics in innovations as well as models with spatial dependencies in the errors. Trapani and
Urga (2009) use Monte Carlo simulations to assess the forecasting performance of pooled, individ-
ual, and shrinkage estimators and find that parameter heterogeneity is a key determinant of the

accuracy of different forecasts. Briickner and Siliverstovs (2006) consider a similar group of methods



to forecast migration data and find that fixed effects and shrinkage estimators perform best. See
Pick and Timmermann (2024) for a review of the literature.

Wang et al. (2019) also propose forecast combination methods. However, their analysis does not
allow for correlation of regressors and parameters or dynamics in the model. Additionally, their
combination weights are determined from in-sample test statistics rather than the expected out-of-
sample performance that we propose. In this sense, our approach is closer to the forecast based test
for a structural break of Pesaran et al. (2013) and Boot and Pick (2020), where the target is also
significant improvements in forecast accuracy rather than a significant change in parameters.

Liu, Moon and Schorfheide (2020) study forecasting for dynamic panel data models with a short
time-series dimension. Though T exceeds the number of parameters that have to be estimated
for each series, such estimates are typically very noisy and not consistent under large N, fixed
T asymptotics. To handle estimation noise, they adopt a nonparametric Bayesian approach that
shrinks the heterogeneous parameters towards local patterns in the distribution. This is closely
related to the idea of using forecast combinations to reduce the effect on the forecasts of noisy
estimates of individual-specific parameters.

Outline: The rest of the paper is organized as follows. Section 2 introduces the model setup and
our assumptions, while Section 3 derives analytical results on the predictive accuracy of individual,
pooled, and FE forecasting schemes. Section 4 introduces our forecast combination schemes. Section
5 describes the empirical Bayes estimator. Section 6 presents Monte Carlo experiments, Section
7 reports our empirical applications, and Section 8 concludes. Technical details are provided in

appendices at the end of the paper and in an online supplement.

2 Setup and assumptions

We begin by describing the panel regression setup and assumptions used in our analysis.

2.1 Panel regression model

Our analysis considers the following linear panel regression model:

Yir = i + Bixi + i = Owy + i, e ~ (0,07), (1)



where ¢ = 1,2,..., N refers to the individual units and ¢t = 1,2,...,7T refers to the time period, y;;
is the outcome of unit ¢ at time ¢, x;; is a k X 1 vector of regressors—or predictors—used to forecast
yi¢ (including, possibly, factors), 3; is the associated vector of regression coefficients, and e is the
disturbance of unit 4 in period t. The second equality in (1) introduces the notations 8; = («a;, 3})
and w; = (1, },)" which have dimensions K x 1, with K = k + 1. For simplicity, we use the time
subscript t for x;; and wj;, but it is important to emphasize that this refers to the predicted time
for the outcome variable, y;;. For a forecast horizon of h periods, all variables in x;; must therefore
be known at time ¢ — h. Our notation avoids explicitly referring to h everywhere, but it should be
recalled throughout the analysis that @x;; includes suitably lagged predictors. We will focus on the
case of h =1 but extensions to larger h are straightforward.

Notations: Stacking the time series of outcomes, regressors and disturbances, define y, =

(Y1, Yiz, - yir)'s Xi = (2, @, ..., xlp), Wi = (71,X;), where 77 is a T' x 1 vector of ones,
and €, = (gi1,&2,...,&7)". Further, let y = (y},95,....¥y), X = (X1, X5,.... X)), W =
(W, Wh,...,W'), and € = (¢],€),...,€y). Generic positive finite constants are denoted by C

when large and ¢ when small. They can take different values at different instances. Apax (A) and
Amin (A) denote the maximum and minimum eigenvalues of matrix A. A > 0 and A > 0 denote
that A is a positive definite and a non-negative definite matrix, respectively. |A| = )\Iln/fx(A' A)
and [|Al|; denote the spectral and column norms of matrix A, respectively. ||z|, = [E (||ac||p)]1/p. If
{fn}oo, is any real sequence and {g,},., is a sequence of positive real numbers, then f, = O(gy),
if there exists a C such that | f,| /g, < C for all n and f,, = o(gy) if fn/gn — 0 as n — oco. Similarly,
fn = Op(gn) if fn/gn is stochastically bounded and f, = 0p(gn) if fn/gn 2,0. The operator 2

. . d e
denotes convergence in probability, and — denotes convergence in distribution.

2.2 Assumptions

Our theoretical analysis builds on a set of standard assumptions about the underlying data generating

process.

Assumption 1. ¢;; is serially independent with mean zero, a fized variance U? 0<e< 02-2 <C<

o0, and with sup; ; E leae|* < C < 0.

Assumption 2. {e;} fori = 1,2,...,N are martingale difference processes with respect to the



filtration, Ty = (Wi, wit—1,...), so that:
E (gt |wis) =0, fort > s, fort=1,2,...,T,T + 1.

Assumption 3. (a) {wy} for i = 1,2,...,N are covariance stationary with E(w;w},) = Q;,

SUp; 4—f1,2,.. 71 E ||'wit||4 < C, sup;p [|lwirs| < C, and

SUpP Amax (Q; ) < C <0, and SUP Amax (Qi_l) <C <. (2)

K3 2

(b) The sample covariance matrices Q;p = T *WIW,; = T} Zthl wywl,, for i =1,2,...,N,

satisfy the conditions sup; Amax (Qip ) < C < 00, and sup; Amax (Qi7 ) < C < <.

Assumption 4. There exists a fized Ty such that for all T > T}

4
< C < o0, (3)

supE HT_1/2W;€¢
i

sup E [Af. (Qir )] < C < o0, and supE [Ay,.x (Qi )] < C < oo. (4)

i
Under Assumption 1 the optimal forecast of y; 741, in a mean squared error sense, is given by
E (yi 41 |lwirs1, W) = 0w, r41. Note that w; 41 is known at time 7', and is bounded under
Assumption 3. Assumption 2 allows the regressors to be weakly exogenous with respect to &; and
therefore permits the inclusion of lagged dependent variables such as y; 7 in w;ry1. Part (a) of
Assumption 3 is standard in the forecasting literature and requires the regressors to be stationary.
Part (b) is an identification assumption that allows estimation of individual slope coefficients, 8;, by
least squares. Assumption 4 is required when we compare average MSFEs based on individual and
pooled estimators. It provides sufficient conditions under which (see Lemma A.1)
o7 (o)

)2 =E HQ;Tl (T_I/QWQsi) ‘2 < C < o0, (5)

where 6; = (W;Wi)fl W'y, is the least squares estimator of 8;. The moment conditions in As-
sumption 4 can be relaxed when wj; is strictly exogenous.
Under weakly exogenous regressors the least squares estimator has a small T" bias, and E (91 — 01-) =

0 (Tﬁl). Under strictly exogenous regressors, in contrast, E (éz - 01') = 0. We also note that, un-

6



der Assumption 3 and 4, ||Q,7 — Q;l| = Op(Tfl/Q), and HQZ_T1 - Qi_lH = Op(Tfl/Q). These results,
which hold for each ¢, are used in the implementation of our combination forecasts below. For proof
of consistency of the weights in the combined forecasts discussed in Section 4 below, we need the

stronger conditions

In(V)
VT

0| Qi — Qi =0p( ),and s [ Qi — @)Y =Op(

still allowing N to rise much faster than 7.2
Finally, let g;; = wg €4, and note that -1/ We; = T-1/2 EtT:l g;;- Also under Assumption 2

g;; is a martingale difference process with respect to Z;; = (wit, w;i¢—1,...), and we have E (g;;) = 0,

T T T
Var <T_1/2 Zgit> =T Z E(949y) =T 'E (WieeiW;) =T Z o7E (wiwy) -
t=1 t=1 t=1
Further, under Assumption 3, E (w,w!,) = @Q;, and it follows that
E(T™'WieelW,) = 07Q;. (7)
We next introduce assumptions that are required primarily for establishing the properties of

pooled and fixed effects predictors.

Assumption 5. (a) 0; = 0 + n; with |0 < C, E|n;|| < C, E(n;) = 0, E(n;n;) = Q,, and
|2, < C. (b) Let q; = wirwym;, then E(q,) = q; (fived), sup; ||lq;| < C, sup; ; B ||qit||2 <C, and
2

<C.

sup; E Hw;,TJrlni
Assumption 6. n; is distributed independently of e;, for all 7.

Assumption 7. £y = N~} Zf\il &r =0, (N_l/QT_1/2), where & =T 'Wie; =T71 Zle Wit =
0,(T~1/2).

Assumption 8. There exists a fized Ty such that for all T > Ty and N = 1,2,..., the pooled

2 As noted by Fan et al. (2015, Section 3.1), this stronger condition is typically satisfied for strictly stationary data
that satisfy strong mixing conditions.



covariance matrices Qnr and Q , defined in terms of Q;r =T *WIW,; and Q;, = E(Q,r ),
N
Qnr =N Qir, and Qy =E(Qur) =N"" Z Q;, (8)
i=1

are positive definite,

‘Q]_VIH < C, and

supE [ max (Qnr)] < C < 00, and supE [)\max (QNTH < C < o0.
N,T N,T

Assumption 9. (g;, W;,n,) are distributed independently over i.

For pooled estimation of 8, the conditions on @, can be relaxed and it is sufficient that Q
is positive definite, and supy p E HQ]_VITH2 < C. Assumptions 5 and 6 identify the population mean
of 8; denoted by @, but allow for correlated heterogeneity.> The degree of parameter heterogeneity
is measured by the norm of £2,, and the extent to which heterogeneity is correlated is measured by
the norm of g;.4

Assumptions 5-8 are not required for forecasts based on the individual estimates and the associ-
ated MSFE. Assumption 9 of cross-sectional independence for €5 (or wj;) is not needed to establish
results on the MSFE of individual forecasts. However, we do require some degree of uncorrelatedness
over ¢ when the objective is to compute the MSFE averaged across all N units under consideration or
over a sub-group of the units. In particular, to ensure that the cross-sectional average MSFE tends
to a non-random limit, the units under consideration must satisfy the law of large numbers. To this
end, we need the units to be cross-sectionally weakly correlated, possibly conditional on known (or
estimated) common factors. The situation is different when we consider pooled or Bayesian forecasts.
Optimality of these forecasts does depend on the assumption of cross-sectional independence, or at
least some form of weak cross-sectional dependence. A comprehensive analysis of the implications
of cross-sectional dependence for forecast combinations and comparisons of predictive accuracy are
beyond the scope of the present paper, however.?

We measure the degree of correlated heterogeneity for unit ¢ at time ¢ by q; = E (w;;w),n;) and,

3We simplify the notations and use 0, rather than 6o, to denote the population mean which is technically more
appropriate.

“Under Assumption 2, E (¢,;) = T~ Zt L E(wiseir) = 0, and E (€ ) = 0. Note that €;; and w;; are uncorrelated
but not independently distributed. Under Assumption 3, HQNTH <sup,; [|Q;rll < C, and || Qy || < sup, [|Q;] < C.

5Cross-sectional dependence in forecast errors can be exploited by using interactive time effects (latent factors) or
spatial (network) effects, see, e.g., Chudik et al. 2016.



on average, by

N N T
anr=N"'T! Z WiWn, = N"'T~! Z Z Wi Wi 1);.- 9)
i=1 i=1 t=1

Taking expectations,
N
E(qny) =dy =N"" Z q;- (10)
i=1

Assumptions 5 and 6 accommodate correlated heterogeneity and allow for non-zero values of E (W;W;n;).
In the context of fixed effects models, the intercepts «; in (1) are allowed to have non-zero cor-
relation with the regressors, but optimality of forecasts based on pooled estimates of 3 requires
Assumption 6 and the condition lim, e 7! i E (XQMTXmiB) = 0, where ;53 = 8, — 8,

Mpr=Ir—17 (T’TTT)_l 7/, T is a T x 1 vector of ones, and Iy is a T x T identity matrix.°

3 Theoretical results on forecasting performance

We next use the setup and assumptions from Section 2 to establish theoretical results on the forecast-
ing performance of different modeling approaches. Section 3.1 discusses forecasts based on individual
and pooled estimation and, building on this, Section 3.2 covers fixed effects forecasts.

Note that our theoretical framework can be equally applied to forecasts across groups instead of
individuals, when there are a priori known groups such as industries or states within a given country.
Pooled regressions can be applied to any given, a priori known group, so long as the number of units
within the group is sufficiently large and the cross-sectional dependence of units within the group is
sufficiently weak. Failure of the latter assumption implies that there are missing pervasive (strong)

common factors that must also be taken into account but lies beyond the scope of the present paper.

3.1 Forecasts based on individual and pooled estimation

We are interested in forecasting y; 741 conditional on the information known at time 7', which

we denote by w; 711 to clarify the correspondence to y; 741. Without loss of generality, given the

5See Pesaran and Yang (2024b). Note that E (X;MTXmZﬂ) = 0 is sufficient but not necessary for the validity of
fixed effects estimation. This condition is not met if @;; includes lagged values of y;;, even if T — oo.



conditional nature of the forecasting exercise, we assume that sup; - [|w; 711 < C.7 Forecasts based

on individual estimators take the form
A A/ .
YiT+1 = Oiwi,T+17 1= 1727"°7N7 (11)

where 0; = (WiW;)"'W'y,, is the least squares estimator of @;. Similarly, forecasts based on the

pooled estimator are given by
- 1 .
YiT+1 = 0wi,T+la = 1727"'7N7 (12)

where 8 = (W'W)~'W'y. Using (8), (9) and the definition of &y in Assumption 7,

—_1 _ —_1 -
0—0;,=-n,+Qnranr + QnrENT- (13)

Forecast errors from these schemes take the form

éir1 = Yirs1 —Uire1 = ciri1 — (0; — 0;)'w; i1, (14)

&1 = Yir+1 — Uir+1 = €ir+1 — (0 — 0;) w; pyq. (15)

Forecasts based on individual estimation

Noting that (91 —0;)w;ry1 = egwi(W;WZ-)_l'wi,TH, it is easily seen that the forecasts based on

the individual estimates generate the following average MSFE:

N N

N_IZé?’T_H = N_IZQ%T_H + T 'Snr — 2RNT, (16)
i=1 i=1

where Sy = N~1 Zf\il sit, Ryp = N7t Zf\il 7 , with elements

rir = (W (WiW ) 'w; ri1) &5.141, (17)

sir = wp 1 Qi (T7'WieieiW,) Qi wiri1. (18)

"See part (a) of Assumption 3.

10



Under Assumptions 1 and 3, E (r;7 ) = 0 and sup, p E [r;7| < C, and under cross-sectional indepen-
dence (Assumption 9) we have Ry = O,(N~'/2). Similarly, sup; r E|sir| < C,
_ (Wiei e W\
E(sir ) =E |:’wg,T+1QiT1 <11TH> QiTl'wi,TJrl:| ;
Syt = E(Sn7) + Op(N71/2), and we obtain the results summarized in the following proposition

for the average MSFE of the forecasts based on the individual estimates (for a detailed proof see

Section A.2.1 of the Appendix):

Proposition 1. Suppose that Assumptions 1-4 and 9 hold. Then, for a fized Ty such that T > Tp,
the average MSFE resulting from individual-specific estimation of the parameters, given by (16), has

the following representation

N N
Ny @ra =N elr + T hvr + Op(N7TV/2), (19)
i=1 i=1
where
N W'ee!W,
hvy = N7 ZE [w;7T+1Qi7“1 (sz> Qz‘lei,TJrl] ’ (20)
i=1

Qir =T 'WW;, hyr >0, and hyr = O(1).

(b) If W is strictly exogenous, hyt simplifies to hyp = N~ ! vazl o?E (w;THQi_TIwLTJrl) )

The hyr term captures the cost associated with the error in estimation of ;. For typical
panel data sets, T is not large and parameter estimation uncertainty captured by the O (T _1) term
T~ 'hyr in (19) can therefore be important. Parameter heterogeneity, in contrast, does not affect the
accuracy of the forecast in (19). The magnitude of hy7 plays an important role in the comparisons
of forecasts based on individual and pooled estimates and depends on how far the predictors are

from their mean. For example, when w;; = (1,2;)" and x4 is strictly exogenous,

—2 -1 2
hynT = oy + N E O’iE 5
i=1 SiT

N _
[(%Tﬂ - CCiT)Zl
)

) 1vN 2 2 1T = N2 - 1T :
where 65, = N~ > . 07, sop =T >, (xie — Tir)®, and Zyp = T~ ), | x4 Hence, hyp is

minimized when z; 711 = Z;7, for all i. When z; 711 # Z;7 for most 4, 7" must be sufficiently large

11



such that SUpiE[(-Ti,T+1 - fz‘T)Z /S?T] <C.

Forecasts based on pooled estimation

While the forecast accuracy results for the individual regressions do not depend on the degree of
parameter heterogeneity, whether correlated or not, the degree of correlated heterogeneity does
matter for consistency of the pooled estimator. Using (13) in (15) we can express the squared

forecast error when pooled estimates are used as follows:
~2 _ 2 + / d dl . o 2d/ . .
€T+l = Eiry1 T Wy r 1@ NTA; NTWi T+1 i, NTWi, T+184,T+1;

where d; N7 = —n; + Q;flT‘jNT + QJ_VITS_NTv Qnyr and @y are defined by (8) and (9), and &y is

defined under Assumption 7. After some algebra, and averaging over ¢, we have

N N N
I 22 a1 2 —1 / /
N E €iry1 = N E giry1 t N E Wi 7417 Wi T+1 (21)

i—1 i—1 i—1

+§N,T+1 + 2RN,T+1;

where §N7T+1, and RN,TH are defined by equations (A.10) and (A.11) in Section A.2.2 of the
Appendix. It can be shown that RN,T—H = Op(N_l/2)7 and SN,T—H = —QQVQXfqu + O, (N_1/2).
The limiting properties of the average MSFE based on pooled estimates are summarized in the

following proposition:

Proposition 2. (a) Under Assumptions 1-9, the MSFE for the forecasts based on pooled estimation

of the parameters, given by (21), is

N N
N7y & =Ny elra + Avr + Op(N71/3), (22)
i—1 i—1
where
N
_ oAl
Ay =N"1 Z E (w rmmiwiri1) — GnQy dn- (23)
i=1

(b) Parameter heterogeneity (whether correlated or uncorrelated) increases the MSFE of the forecasts

based on the pooled estimator, namely Ayt > 0.

12



Note that the impact on the MSFE from neglected heterogeneity, Ay, does not vanish even if
both N and T" — oo, which is similar to the finding by Pesaran and Smith (1995) for heterogeneous
dynamic panels since heterogeneity is always correlated in dynamic panels.®

A comparison of forecasts based on individual and pooled estimates

Next, we consider the difference in the average MSFE performance of the forecasts based on the
pooled versus individual parameter estimates. Proposition 1 shows that the MSFE from the forecasts

based on the individual estimates will be affected by an estimation error term of the form

W'hee!W, _
! ZE [ w1 Qi (”T”> Qifl“lwi,T+1:| > 0.

While the forecasts from the pooled estimates are more robust to estimation errors, they are in turn

affected by correlated and uncorrelated heterogeneity as captured by the term

N
B A1
Ay =N—1 Z E (w;Termé’wi,TH) —qnQnN dy-

We compare the difference in the average MSFE of the forecasts from the pooled versus individual

estimates as a ratio measured relative to the MSFE of the forecasts from the individual estimates:

N, zT+1*N P Gy Ant — T hyr + Op(N71/2)
N - "1y
NTEE, € N 't elr + T vy + Op(N1/2)

Hence, there exists a Ty such that, for a fixed T > Ty, and as N — oo

121 1 1T+1_N Zz 1 'LT+1 p A=T 'hy
1 T a2iT thy'
N~ Zz 1 1T+1 0%+ T

(24)

where hy = limy_ oo Ayt > 0, A = limy_ oo Ay > 0, and 72 = limy_yoo N7} Zf\il 02-2 > 0. It
follows that when T is fixed and N is large, the ranking of the two forecasting schemes will depend

on the sign and magnitude of A — T~ 1hp.9

8This latter property is illustrated by a simple panel AR(1) model with heterogeneous AR coefficients in Section
A.4 of the Appendix. See also Pesaran and Yang (2024a) where estimation of such models with short 7' panels is
considered.

In comparing Ar with T~ 'hy, it is also important to bear in mind that hr is well defined if moments of 6; (at
least up to second order) exist (see the moment condition (5)). This in turn requires that 7' > Ty for some finite Tp.
The value of Ty depends on the nature of the (wj, ;) process and its distributional properties.
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For large values of T', however, the individual forecasts generate the lowest MSFE values. Specif-

ically, for a fixed N and as T" — o0

121 1 zT+1 1Zz 1 zTJrl 2 AN

5 + Op(N N2,
N~ 122':1 € T+1

Similarly, when both N and T' — oo (in any order)

_ N A
121 1 1T+1 -N 121:162,
N— 122':1 é12,T+1

where A = limp_,o(Ar). Therefore, vanishing estimation uncertainty implied by large 7' means

that, on average, individual forecasts are at least as precise as pooled forecasts irrespective of V.

3.2 Forecasts based on fixed effects estimation

The comparison of forecasts based on individual or pooled estimates can be extended to intermediate
cases where a sub-set of the parameters are allowed to vary across units. A prominent example is

the FE forecast
N N ~/
G171 = QiFE + Bre®i i1, (25)

-1
where &; pg = 77 (y; — BppX:)/T and Bpg, = (Zl | XiMpX; ) SN | X! Mry,. The associated

FE forecast error is given by
~FE = ~ =
éiry1 = cir+1 — (Brr — B)'Tir 11, (26)

= _ = - 1T - 1T
where & 741 = €141 — EiTy TiT41 = Tir41 — T, Er = T 1Y €, and Zip = T71Y, | @it
Section S.5 in the Online Supplement provides details of the derivation of the MSFE under fixed

effects estimation:
N

N_lz( & 141) f=NC 1251T+1+A?V%_QC?V%“+OP(N_1/2)7 (27)
i=1

14



where

N
—_ = = — A1 _
ANy =N"1 Z E(Z] 7,1M; 57 pTir41) — An sQN AN 5> (28)
i=1
Mg = B; — B, Exrp = N7! SN T X Mre;, Qnrps = N1 SN TTIX M X, dnTg =
N7 (T XM X i) m; 5 and
N N
_ = _ ;A1 - o
cNp=-N"" ZE (M} pZir16ir) + AN QN g [N ! ZE (%‘T&'T)] : (29)
i=1 i=1
CF\;}% tends to zero for T sufficiently large or if x;; is strictly exogenous.
Similar to the case of the individual and pooled forecasts, for 7' finite and N large, the ranking
of the individual and FE forecasts will depend on the relative magnitudes estimation error and
parameter heterogeneity. Precise expressions can be found in the Online Supplement. For T' — oo

the individual forecasts will be more precise than the FE forecasts.

4 Forecast combinations

We next consider approaches that combine the forecasts from Section 3 to minimize the MSFE.

4.1 Combinations of individual and pooled forecasts

Given the MSFE trade-off associated with the forecasts in (11) and (12), combining the forecasts
based on the individual and pooled estimates, 9; 741 and @; 741, may be desirable. As noted in
the literature (e.g., Timmermann, 2006), forecast combinations tend to perform particularly well,
relative to the underlying forecasts, if the forecast errors are weakly correlated and have MSFE
values of a similar magnitude. Correlations between forecast errors based on the individual and
pooled estimation schemes tend to be lower for (i) greater differences in the estimates of 6; resulting
from larger estimation errors (small T'); (ii) greater heterogeneity (large ||€2,||), and (iii) greater bias
of the pooled estimator due to correlated heterogeneity.

If the level of parameter heterogeneity is either very large or very small, one of the individual or
pooled estimation approaches will be dominant, reducing potential gains from forecast combination.

Similarly, if T" is very small but IV is large and there is little parameter heterogeneity, we would expect

15



pooled estimation to dominate individual estimation by a sufficiently large margin that forecast
combination offers small, if any, gains. Conversely, if T is very large, forecasts using individual
estimates will dominate forecasts using pooled estimates by a sufficient margin that renders forecast
combination less attractive. Building on these observations, we combine the two forecasts 9; 741 and

¥i T+1 using common weights, w, to obtain'?

Yiry1 (W) = wiirer + (1 — w)¥ir+1, (30)

with associated forecast error e;T +1(W) =wé 711+ (1-w)é; r41. The average MSFE of the combined

forecast is given by

N
N_IZ e i1 (w) ( IZ zT+1> (1-w)? ( IZ zT+1>
N
+2w(1 — w) (Nl Zéwﬂéi,pﬂ) :

=1

The value of w that minimizes the average MSFE is therefore given by

-1 1 N - ~
Zz 1 zT+1 (N Z¢:1 ei,T+1€i,T+1)
! 1 SN s '
(N Zz 1 zT—i—l) (N Zz 1€ 1T+1> _2<N >in1 ez,T+1€z,T+1>

Wy = (31)
Expressions for N~ SN é?,T 41 and N1 SN é?}T 41 are given by (19) and (22), respectively. We
obtain a similar expression for N ! Zf\; €i T+1€i 7+1, wWith IV -1 Zfil a?}T 41 cancelling out from

wip- The result is summarized in the following proposition (proven in Appendix Section A.2.3):

Proposition 3. (a) Under Assumptions 1-9, and for a given value of w; 1, the optimal combi-

nation weight that minimizes the MSFE of the forecast combination in (30) is given by

e Ant — T YNr
NT™ Anr + T-thyy — 2T Ny

+ 0,(N~Y?), (32)

OWe focus here on a simple constant-coefficient linear combination scheme. Lahiri et al. (2017) discuss a broader
range of combination methods and Elliott (2017) provides an analysis of the effect on the combination weights and
forecasting performance from having a large common component in the forecast errors.
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where

N
_ 1 [(WleielW; _
hyr =N~ ZE [wg,T+1QiT1 <ZZT“> QileiaT'H] >0,
i=1

N
_ -1 A—1_
Ay =N"" ZE (W} pmimiwiri1) — AnQy dn > 0,
=1

and

N
Yy =TN ') E[eWi(WiW3) 'wi ppw) ] QN
i=1

N
— TN B [eWi(WiWy) w; ryaw)gmy]
=1

(b) Under strict exogeneity, irrespective of whether heterogeneity is correlated, we have Y7 = 0,

— NIV 2 ! -1 — NIV !
hye = N72 3, o7 (wi,T—i-lQiT 'wi,T+1) s and ANy = N33 E (wi,T+1Q77wi,T+1>'

For small to moderate values of T and large N, we expect wy; < 1, with a non-zero weight

placed on the forecasts based on the pooled estimate.

Forecast combinations with individual weights

Pesaran et al. (2022) show that, under strict exogeneity of the regressors and uncorrelated hetero-

geneity, optimal weights can be obtained that are specific to the individual unit. The combination

of individual and pooled forecast is then
Yirs1 = wiliry1 + (1 —wi)Jiri-

where the optimal value of w; is given by

’ ,
wz‘,T+1anz,T+1

1 21
wip  (T7107 Qi + Q) wiria

*_
w; =

(36)

The weights again depend on the variances and covariances of the underlying forecast errors. Related

to this, Giacomini et al. (2023) develop a random effects approach for linear panels that similarly

combines univariate and pooled forecasts in a way that minimizes minimax-regret and MSFE.
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4.2 Combining individual and fixed effect forecasts

Combination weights can also be determined for the case where the pooled forecast is replaced with

the FE forecasts. In this case, the combined forecast is given by

Yiri1(wre) = wrediT+1 + (1 — WFE) i, 741,FE, (37)

yielding the optimal pooled weight

2
-1V (sFE —1vN sFE 5.
N30 (ei,T—i—l) - (N >ic1 ei,T—i—le%T-f'l)

N 42 N (sFE 2 N ~FE ' (38)
N5 ei,T—i—l) +NIY (ei,T-i—l) -2 (Nfl dic ei,T+1€i7T+1)

*
WFE,NT = (

2
The expressions for N~1 Zf\il (éggﬂ) and N~! Zfil é?7T+1 are given by (27) and (19), respec-
tively, and the expression for N1 Z@]\L 1 ég% 416i7+1 can be similarly obtained. In this case, the
shared term Zf\i 1(eiryr — &i1)?/N cancels out and we have the result summarized in the following

proposition with proofs provided in Section A.2.4 of the Appendix.

Proposition 4. (a) Under Assumptions 1-9, the optimal combination weight that minimizes the

MSFE of the forecast combination in (37) is given by

FE ~1,,FE FE
Any — T pyr — ( NT — CNT,B)

Wi = + O, (N~V?), 39

where ALE. and cX%. are defined in (28) and (29), respectively,

N
_ = _ X/-MT€‘€I-MTX‘ 1 =
hyrg=N~" ZE [mi,T-f—lQiTl,B ( : ZTZ l) QZ-TI,,B%',TH] ;

=1

N
- > = - -1 _
Nt o= TN'YE |:<:3FE_ﬂi> wi,T+1$§,T+1] Qn AN
i—1

N A , i
~TN~* Z E [<5FE - ﬁi) wi,T+1fB;,T+17h,ﬁ} ;

i=1
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and

N
CNT3 = N1 Z E [53;7T+1(X;MTXi)flngTEif—fiT] .
=1

(b) Under uncorrelated heterogeneity, ¢ﬁ,}% =0, and Aﬁ% and hnt g will be affected accordingly.

4.3 Estimation of combination weights

Estimates of the weights for the forecast combination in Proposition 3 require estimates of Ay,
hyt, and ¥n7. Under Assumption 9, these terms can be estimated by their sample means with
unknown parameters replaced by their estimates. We summarize the estimators here with details in

Appendix A.3. Using (34) and (33), the estimators of Ayp and hnp are given by

N
Ane = N1 wi gy fiifjwi i, (40)
=1

where 7, = 6 — 6;, and

N
hyy = N7t Zw;TﬂQleHiTQ;lei,TH, (41)
i=1

~ _ T ~ T A~ A~ ~/ .
where H;p = 62771y, wywl,, 62 = >, & /(T — K), and é; = yix — O;w;r. We show in

Appendix A.3 that

Ant — Anr = O, (N*W) +0,(T7Y),
ln(N)> ‘
VT

hnt — hyy = Op(N_l/z) +Op (

In the case of strictly exogenous regressors, ANT is a consistent estimator of Ayt for fixed T as
N — oo.

Consider now ¢y, given by (35), and recall that ¢)y7 = 0 under uncorrelated heterogeneity.
To estimate ¥ under correlated heterogeneity, we first note that the approach of replacing ex-
pectations by sample moments and then estimating e; from the OLS residuals, &; = (yi — Wléz)
will not work in the case of ¢y, since W&, = W/ (yi — Wzéz> = 0 for all 7. If used in (35), this

results in @NT = 0, which is not a consistent estimator of ¥y under correlated heterogeneity. To
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~ /
overcome this problem, we replace EQWZ-(W;Wi)*l by (Bi — 01-) and note that ¥y can be written

equivalently as (noting that w; 741 for i =1,2,..., N are given)
N A , L,
Yy = N1 Z E [T (01‘ - 01;) ] E (wir1wiry1) Qn dy (42)
i=1

N
_ N1 Z E [T (éi — 0i>,] E (’wz',T+1’w§,T+177i) .
i=1

We now employ a half-jackknife estimator of §; (Dhaene and Jochmans, 2015, Chudik et al., 2018)
to estimate TE (él — 0i>, which is the small sample bias of 8; in the case of weakly exogenous re-
gressors. The half-jackknife estimator of 6; is defined by él JK = 2@,- — % (éw + éib>, where 9ia and
0;, are least squares estimators of 8; based on two equal halves of the sample of size T}, = T'/2 (omit-
ting an observation in the case of uneven 7°), namely 0o = <Zf£1 witw§t> - 2121 w;ryi¢ and 0, =
<Z?:Th+1 witw;t> -1 ZtT:ThH w;y;t. Then E [T (é’Z — 91)} can be estimated by T' B (9m + éib> — éz}

and YN by

YN =

N '
- L A ; ~—1 _ )
TN, [2 (gm + Oib) - 01‘] wi,T-&-lw;,TJrl] Qnrdnr (1) (43)
=1

N
~TN! Z [
=1

/
R R R L
<9m + 91'1)) - Oi] Wi T1W; 7417,

DN | =

where #); = 8; — N"'S°N 6, and gyr (7) = (NT)"' SN, W/ Wi, Consistency of ¢y as an
estimator of ¥y is established as N,T — oo, since TE (éle — 01-) =0 (T_l).11 Thus, to use the
half-jackknife method for models with weakly exogenous regressors we need T large, although it is
not required that vT' /N tends to zero, as it is in the case of large N and T asymptotics.

The components of the weights in Proposition 4 that combine individual and fixed effects forecasts

can be estimated in a similar fashion, with details provided in Appendix A.3.

4.4 Empirical Bayes Forecasts

Bayesian panel forecasts are becoming increasingly common in empirical applications and constitute
an alternative approach to the frequentist forecasts discussed so far. Due to their resemblance to our

forecast combination schemes and their recent popularity (e.g., Armstrong et al., 2022, and Efron,

"Note that zﬁNT — Y7 depends on E [(91 - 01-) — (% (91@ + éib) - é,)] =E (éi,JK - Gi) .
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2016), we focus on empirical Bayes (EB) methods. The EB forecast uses the estimator of Hsiao et

al. (1999) and takes the form @fﬁH = 9;7E3wi7;r+1, where

~ . ~ —1 _ . ~—1 =
0i55 = (6, °WiW,;+€, )7 (6; "Wy, +Q, 0), (44)
O=N"'YN,0; 62=(T-K)'&é;,and Q=431 (0, —0)(0;—0), where & =y, — W8,
and 6; = (W;WZ-)_1 Wiy, .12 él £B can also be written as a weighted average of 6;, that allows for
full heterogeneity, and the mean group estimator, é, namely él g = W0, + (I — Wir) é, with

the weight matrix W;r given by
o -1a-1\ 7!
Wir = (Ik +T7'67Q;; Q, > ) (45)

recalling that Q,; = T~ 'W/W, is invertible under Assumption 3. The weights on the heteroge-
neous estimates are larger, the greater the degree of heterogeneity, as measured by the norm of Qn,

. ~ ~ S . o 1A 1. . ~
with 0; pp — 0; as Hﬂn) — 00. Also, since a?QiTI Qn is bounded in T, 8; gp converges numer-

ically to 9,~, as T — oo. Hence, one would expect the EB estimator to perform well even when T
is relatively small and the degree of heterogeneity is not too large. For large T', EB and individual
forecasts coincide and both methods will work well.

The EB weights do not depend on w; 741 and are derived assuming uncorrelated heterogeneity
and strictly exogenous regressors. They have the desirable feature of placing more weights on
individual estimates if they are precisely estimated relative to the degree of parameter heterogeneity
measured by Qn~ The individual optimum weights in (36) fall somewhere between the common
optimal weights and the EB weights.'® Like the EB weights, consistent estimation of individual
weights require strict exogeneity and uncorrelated heterogeneity.

The EB weights are comparable to the unit-specific weights given by (36) and the two sets of

weights coincide only when w; 7y is an scalar. To see this note that the estimates of the unit

21t is necessary that N > T for ﬁn to be positive definite.

13While the EB estimator in (44) is fully parametric, other studies pursue a non-parametric approach to the distri-
bution of @;; see, e.g., Brown and Greenshtein (2009) and Gu and Koenker (2017) and, more recently, Liu (2023) and
Liu et al. (2023).
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specific weights can be written as

/ —1 -1
w; Q7 Wi r+1
N A D JT+1%T W, T+
O = (1462771 Zl L , (46)
wi,TJrlQ??Wi,T-i-l

and reduces to the EB weights only when K = 1 and @} no longer depend on w; r11. But in general
the estimates of the unit-specific weights differ from the EB weights.

An alternative to the EB forecast is a hierarchical Bayesian approach as proposed by Lindley and
Smith (1972). The full Bayesian treatment would require choices of the priors of each component,
including the parameter covariance matrix. In the Online Supplement, we provide Monte Carlo

results that shows that the resulting forecast performance is highly sensitive to the choice of prior.

5 Monte Carlo experiments

We examine the finite-sample performance of the panel forecasting schemes in the context of a dy-
namic heterogeneous panel data model using Monte Carlo experiments.'* We allow for dynamics,
parameter heterogeneity, and correlations between the regressors and coefficients. The forecasting
methods are: (1) individual estimation which serves as the benchmark against which other methods
are compared, (2) pooled estimation, (3) random effects, (4) fixed effects, (5) combination of indi-
vidual and pooled forecasts using the weights in (32), (6) combination of individual and FE forecasts
using the weights in (39), (7) individual forecast combination weights, and (8) EB forecasts.!5
Results do not vary greatly along the N dimension, so we focus on the case with N = 100 and
provide results for N = 1000 in the Online Supplement. The T dimension of the panel is more
important, so we consider three different values, T' = {20,50,100}. The values of the parameters

used in the simulations are reported in Table S.1 in Appendix S.2.

5.1 Data Generating Process

Our DGP augments a panel AR(1) model with an additional regressor,

Yit = i + BiYit—1 + ViTit + €it, (47)

“Further analytical results for a simple panel AR(1) model are provided in Section A.4 of the Appendix.
15 Additional results for equal weighted combinations and oracle weights are in Section S.4 of the Online Supplement.
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where ;¢ = 03(z2 — 1)/V2 with 2 ~ iidN(0,1), 0 ~iid(1 + x3) /2, and x; is generated as
Tit = fai + it (48)

where & = paiis 1+ 0w (1= p2%) P v, vig ~ #1dN (0,1), e = (22— 1)/V/2, 2 ~ 1idN (0,1) , and
agi ~ iid(l + X%) /2, for individual units ¢ = 1,2,..., N, and observation periods ¢t = 1,2,...,T.
The autocorrelation coefficient of x;; is pz; ~ iid Uniform(0,0.95), allowing for a high degree of
dynamic heterogeneity in the regressors.

The coefficients of the lagged dependent variables, y;;_1, are generated as 3; = [y + 1;3, with
nig ~ iidUniform(—ag/2,a5/2) and 0 < ag < 2(1 — |Bol).

To allow for correlated heterogeneity, we set
a; = Qi + Gz + oy, and v; = yo; + Thiei + oG, (49)

where n;, ¢; ~ iidN(0,1) and a9 = E () = ap; + ¢E (i) = cpi. We examine three settings:
o api =2/3if i < N/2, api = 4/3if i > N/2, 02 = 0.5, 70; = 0.1, and 02 = ag =0

® (y; — 2/3 if ¢ < N/2, Qo = 4/3 if & > N/2, 0'(21 = 05, Yoi = 02/3 if 4 < N/2, Yoi = 04/3 if
i> N/2, a?Y =0.1, and ag = 0.5

® (Xpg; — 2/3 if 4 < N/2, Qp; = 4/3 if 7 > N/2, 0'3 = 1, Yoi = 02/3 if ¢ < N/Q, Yoi = 04/3 if
i>N/2,02=02 and ag =1

Note that non-zero correlations need not bias the pooled estimates. What matters for pooled
estimates is the correlation between yztfl and a:?t and the individual coefficients.

Using (48) and (49), we have
E [zt (v — 70)] = E [(1tas + &it) (Thas + 0¢G)] = 7B (u2;) # 0,

E (27 (v — 70)] = E [(1tai + &) (Tpias + 0¢G)] = 7B (1) -

Therefore, E [:zit_l (vi — 'yo)] = 0 if py; are draws from a symmetric distribution around 0. To rule

out this possibility, we draw p,; from a chi-square distribution. To control the degree of correlated
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heterogeneity, we first note that (taking expectations with respect to both i and t)

E(v) =90, Var(y)=m"+0¢,

E(2i) = B (ai + &) = 0,  Var (zy) = E (23t — pai)® = 02,

and E [Var (z;4)] = E (1 + x}) /2 = 1. Also, since v is distributed independently of n; and ¢; for all
t, 1 and j, Cov (v, x;) = m and Corr (7, ) = 7 (0? + 7r2>71/2. While heterogeneity is generally
correlated in AR panel models (Pesaran and Smith, 1995), this setup allows us to study further
the role of correlated heterogeneity by varying the correlation between the coefficient ~; and x;; as

measured by p.,. To achieve a given level of Corr(v;, zit) = pye, We set

(1-p2,)"%

Similarly, to achieve Corr(ag, Zit—1) = paz, We set

PaxOn

T

(51)

Defining O'?Y = Var(y;) = 72 + O'g, we can use (50) to see that @ = p,,0,. An equivalent result
emerges for ¢ where, for 03 = Var(«;), we have ¢ = pap04. We thus use the parameters Jg, a%, and

ag to vary the degree of parameter heterogeneity in o, ; and 3;, respectively.

QitVilwi 52 vz to?
1-p2 0 Tyl 1-p2

We also experimented with initialization schemes that started the DGP on values away from the

We set & = 0 and initialize yio as yio ~ AN (igo, 020 ) with piiy0 =

long run equilibrium, which did not change the results qualitatively.

Since the forecast combinations use w; 741 = (1, yi7, z; )’ as an input, in the simulations we set
W; T4l S Wi T4l = (1,E (yit) + Ki/ Var(yie), pai + Hiﬁm),, where E (y;;) and Var(y;;) are derived
by assuming y;; is stationary and conditional on the model’s parameters.'®

The panel forecasts are evaluated using the ratio of the average MSFE of method j (pooling,

fixed effects, random effects, empirical Bayes, and the forecast combinations) measured relative to

2 2 _2
161t is easily established that E (y;;) = 7“’1+fb‘1‘17 and Var(y;:) = 1?&2 + (Wl’fgg) (1 + 127%10;;)
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that of the reference individual forecasts

N R ~
5E Zict v Wir 1 — Dirt1ga)?

N R -
ﬁ >oic1 21 Wi r1,r — yz’,T+1,b,r)27

I‘MSFEj =

where b denotes the benchmark forecast which is the individual forecast. Replications are denoted

by r=1,2,..., R, where R = 10,000.

5.2 Simulation Results

Monte Carlo simulation results are reported in Table 1. Our theoretical analysis shows that the
term hpy7 that adversely affects forecasts from the individual estimates depends on the value of
|lwi 41 — Elw; 741]||, with small values of these deviations leading to better forecasting perfor-
mance for the individual estimates. To examine this effect, we present two sets of conditional
forecasting performance results, namely for x; = 0, that is when w; 741 is set to its mean E(w;) =
(L,E (yit) , ftai + Ki0zi) in the top panel and when w; 741 deviates from its mean by generating fore-
casts conditional on w; 741 = <1, E (yit) + kin/ Var(yit), pai + /ﬁ;z‘O'm‘>/ in the bottom panel. We set
ki =1fori < N/2 5 and k; = —1, for i > N/2.

We vary the parameter that controls correlation in heterogeneity (p,.) across three blocks of
results and examine different combinations of the two hyperparameters that determine heterogeneity,
ag and o2. Finally, we vary the time-series dimension (T') along the columns.

With little heterogeneity and a small time-series dimension, T' = 20, consistent with Propositions
1 and 2, pooling yields an MSFE up to 25% lower than the individual forecast with the gain being
largest when the predictor is far from its mean (k; = £1). However, the advantage of the pooled
forecasts over the individual forecasts vanishes quickly for the two larger values of 7" and turns to
distinctly worse performance under larger parameter heterogeneity—particularly when the predictors
are away from their mean.

The RE estimator produces the most accurate forecasts when parameter heterogeneity is limited
to the intercept (ag = 0, 02 = 0.5) and the predictor is far from its mean. When slope coefficients
are heterogeneous, this method yields quite poor forecasting performance that deteriorates with 7.
Similar findings hold for the forecasts based on the FE method. Forecast accuracy for both methods

tends to worsen (relative to the benchmark forecasts) under correlated heterogeneity.
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Regardless of the level of heterogeneity in parameters (whether correlated or not), the empirical
Bayes forecasts perform very well particularly for the smallest sample size (7" = 20). Unlike forecasts
based on the pooled, RE or FE estimators, the empirical Bayes forecasts have the attractive feature
that they never perform worse, on average, than the benchmark. These forecasts perform particularly
well when the predictor is away from its mean value.

Among the three forecast combinations, the cross-sectional averaging scheme that combines the
pooled and individual forecasts generally performs better than the fixed effect combination scheme
and also, in some cases, improves on the EB forecasts. When w; 741 is far away from its mean,
T is small, and parameter heterogeneity is high, the combination scheme with individual weights

performs particularly well, including relative to the EB forecast.

6 Empirical applications

We next apply our set of panel forecasting methods to two empirical applications on house price
inflation in U.S. metropolitan areas and inflation in CPI sub-indices. These applications represent
quite different levels of in-sample fit: For the CPI data the pooled R? (PR?) of our models is around

0.2 while for house prices it exceeds 0.8.

6.1 Measures of forecasting performance

Our empirical applications compute the out-of-sample MSFE as MSFE;; = (T—1)~t Zf:_j}l (Yit41—
gi,j,t_’_l)g, where §; ;141 is the forecast of y; ;1 using method j and information known at time ¢. Each
forecast in the test sample, 7; j:4+1, is generated using a rolling estimation window of observations
t—w+ 1,t —w,...,t, where w is the length of the rolling window, which we set to w = 60 in
both applications. As in the simulations, we report the ratio of the average MSFE of method j
relative to the average MSFE for the benchmark forecasts (b) from the individual-specific model
rMSFE; = (N_l SV MSFEU) / (N_l SN MSFEib>. We also report the proportion of units in
the cross-section for which each method produces a smaller MSFE than the benchmark along with
the proportion of units in the cross-section for which each method has the smallest or largest MSFE
value.

Similar to the simulation study, we distinguish between forecasts where the regressors are close to
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their mean or one standard deviation away from their mean. Unlike in the Monte Carlo experiments,
the parameters are unknown in the two applications and we, therefore, select forecasts based on
diT41 = l%wijﬂ. Regressors are said to be in the neighborhood of the mean of d;; when |d; 741 —
d; — KiSq| < cogq, where d; is the mean and sy the standard deviation of dj; in the estimation sample,
t=1,2,...,T and ¢ = 0.1. k; = 0 then gives the results where the predictors are close to their mean
and k; = +1 shows the results when the predictors one standard deviation away from the mean.
Additionally, we report results for all forecasts.

We examine the significance of any differences in forecast accuracy using the Diebold and Mariano
(1995) (DM) test of predictive accuracy both for the panel as a whole and for the individual series.
First, we use the panel version of the DM test proposed by Pesaran et al. (2013). This tests the
null that the MSFE generated by the individual forecasts, averaged both across time and units, is
equal in expectation to the equivalent MSFE generated by the panel models.'” Second, we apply the
DM test to the N forecasts for individual units in the sample and report the number of significant
values in either direction and the number of insignificant test statistics. The tests are set up so that
negative values indicate that the panel forecasts are more accurate than the individual forecasts,
while positive values of the DM tests indicate that the individual forecasts are more accurate. For

simplicity, we report results for all forecasts.

6.2 U.S. house prices

Our first application uses quarterly data on real house price inflation in 377 U.S. Metropolitan
Statistical Areas (MSAs) from the first quarter of 1975 to the first quarter of 2023, which we obtain
from the Freddie Mac website.'® Our forecasts target the one-quarter-ahead MSA-level rate of house
price log changes. After accounting for the necessary pre-sample and the estimation window, the
first forecast is for 1991Q2 and the last for 2023Q1, a total of 128 forecasts per MSA.

Our prediction model for the house price inflation rate in quarter ¢ for MSA i, y;;, takes the form

R)
t

_ e
Yit = & + Biyie—1 + B yi—1 + WRz'yi(, )+ i)

1 + Eit, (52)

1"The panel DM test first computes the difference between the cross-sectional average squared forecast error at a
given point in time for the benchmark versus competing model. It then uses the time series of these average squared
forecast errors to compute Newey-West HAC standard errors that account for serial dependencies.

18For each MSA house prices are calculated by deflating the Freddie Mac house price index by the CPI.
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where ¢ = 1,2,..., N denotes individual MSAs and t = 1,2,...,T refers to the time period,

Y = 25:1,16# wi Ykt is the spatial effect for a set of spatial weights w3, gz(tR )

price inflation in the region of unit 4, and gt(c) is the country-wide average house price inflation. The

is the average house

weights, w;, measure the spatial effect of house prices in MSA & on house prices in MSA ¢ and are
based on geographic distance, that is w, = v/ Zévzl vy and vy, = 1 if MSAs (i,k) are at most
100 miles apart and is zero otherwise. We obtain the weights from the data set of Yang (2021) and
exclude MSAs without neighbors within 100 miles, which leaves 362 MSAs in our sample.

The top panel in Table 2 reports the results. The column labeled “all” shows results averaged
across the full test sample, while columns labeled x; = 0 and k; = £1 show results for sub-samples
in which the predictor vector is close to the mean and one standard deviation away from the mean,
respectively. In the first three columns, the first row shows the cross-sectional average MSFE value
for the forecasts based on individual estimates. Subsequent rows report ratios of the mean of the
individual MSFE for the respective methods relative to the benchmark forecasts. Values below unity
show that the ratio of average MSFE performance (across MSAs) is better for the method listed
in the row than for the benchmark while values above unity indicate the opposite. The next three
columns headed ‘freq. beating benchmark’ report the proportion of MSAs for which the respective
methods have a smaller MSFE than the benchmark, while the columns headed ‘freq. smallest MSFE’
and ‘freq. largest MSFE’ show the proportion of MSAs for which the respective methods have the
smallest or largest MSFE among all forecasting methods.

Across the full sample, the average MSFE ratio below one for the pooled, RE, and FE forecasts.
However, these methods do notably worse than the forecasts based on individual estimates when
the predictors are close to their mean (x; = 0). Empirical Bayes forecast produce the best overall
MSFE performance, reducing the MSFE of the benchmark by 10%, followed by reductions of 6-8%
among the three forecast combination schemes. The EB forecasts perform particularly well when
the predictors are far away from their mean.

While the proportional reductions in MSFE ratios may not seem very large, they translate into
very high frequencies of beating the benchmark. The EB forecasts produce lower MSFE values than
the benchmark for 94% of the housing price series followed by 92-94% for the forecast combinations
but only 59-62% for the pooled, RE, and FE forecasts.

Turning to evidence of individual forecasts being “best” or “worst”, for the full test sample the
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benchmark forecasts only produce the smallest MSFE for 1% of the variables versus 19% for the EB
and 16% for pooled forecast combination schemes. Using this metric, again the benchmark forecasts
perform much better when the predictors are close to their sample mean for which they are most
accurate for 27% of the MSAs versus 16% and 8% for the EB and pooled combinations, respectively.
Conversely, forecasts based on individual estimates are worst overall for 57% of the variables versus
1% or less for the EB and forecast combination schemes.

These results show that the EB and combination approaches offer the attractive feature of not
only improving on the MSFE values of the baseline “on average” but, equally importantly, rarely
producing markedly worse forecasts than the baseline and often generating substantially better
results. Interestingly, the risk of producing the highest MSFE value is notably lower for the pooled
combination and individual weighted combination than for the EB forecasts when the predictors are
close to their mean.'”

Figure 1 summarizes our findings visually through density plots fitted to the cross-sectional
distribution of MSFE ratios for our forecasting methods.?’ MSFE ratios have a widely dispersed,
right-skewed distribution for the pooled forecasts compared to the Bayesian and combination ap-
proaches whose distributions are far more peaked and centered just below unity. This feature is
highly undesirable as it raises the likelihood of very poor forecasts for an individual housing price
series compared with that of the Bayesian and combination approaches.?!

The first and second rows of Table 3 reports panel DM test statistics and the number of cross-
sectional units with a DM test below —1.96 (panel forecasts are significantly more accurate) or above
1.96 (individual-specific forecasts are significantly more accurate), respectively, for each application.

The panel DM tests show that the EB and combination forecasts are significantly more accurate
than the individual forecasts “on average” as well as for a large portion of the individual series
(between 169 and 240 MSASs), while the opposite only happens for two individual MSAs in the case
of the EB forecasts. Pooled, RE and FE panel forecasts are also significantly more accurate than
the individual forecasts on average as well as for between 57 and 62 of the individual MSAs and

significantly less accurate for very few MSAs.

9Equal-weighted combinations also performs quite well in both of the empirical applications, which is a known
feature in the forecast combination literature.

20To reduce the number of lines, we do not plot the densities for the FE and RE approaches which are very similar
to those from pooling.

2! The impressive performance of the EB approach for the tail groups is consistent with Efron (2011).
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Figure 1: Distributions of ratios of MSFEs
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Notes: The graphs show density plots of the ratios of MSFEs for the house price application
in the left column and those for the CPI subindices application in the right column. In the
first row are the density plots for the MSFEs from all forecasts, in the second row for the
forecasts for which d;r41 = é;wi,m_l is close to its mean in the estimation sample, and in
the third row for the forecast for which d; 71 is close to plus or minus one standard deviation
from its mean in the estimation sample. The density estimates use a normal kernel with a
bandwidth 0.04. The forecasting methods are listed in the footnote of Tables 1.



Table 3: Diebold-Mariano test statistics for equal predictive accuracy

Pooled RE FE Emp.Bay. Comb(pool) Comb(FE) Comb(w})

House Prices: all forecasts

Panel DM -9.45 —-9.11 -7.57 —24.63 —22.93 —21.19 —27.59
DM < —1.96/DM > 1.96 60/6 62/6 57/8 209/2 189/0 169/0 240/0
CPI: all forecasts

Panel DM -7.95 —-7.78 —-7.56 —11.25 —11.67 —10.59 —11.48
DM < —1.96/DM > 1.96  35/60 33/45 32/42 134/0 56/23 50/10 137/0

Notes: The row “Panel DM” reports the results of the panel version of the Diebold-Mariano test of Pesaran et al. (2013).
The second row report unit by unit Diebold-Mariano test results: “DM < —1.96” reports the number of units with a
DM test statistic smaller than —1.96 and “DM > 1.96” shows the number of units whose test statistic exceeds 1.96. The
remaining units have insignificant DM test statistics. In total the house prices panel consist of 362 units and the CPI panel
of 187 units. Each test is for the null hypothesis that the forecasting method in the columns has equal forecast accuracy
as the forecasts based on individual estimates. The forecasting methods are listed in the footnote of Table 1.

6.3 CPI inflation of sub-indices

Our second application covers inflation rates for up to 187 sub-indices of the US consumer price index
(CPI) obtained from the FRED database. The data is measured at the monthly frequency and spans
the period from January 1967 to December 2022. Again, we use rolling estimation windows with 60
observations and require each estimation sample to be balanced, excluding individual series without
a complete set of observations in a given window. After accounting for the necessary pre-samples,
we generate up to 599 forecasts for each series, with the first forecast computed for February 1973.

We consider an autoregressive forecasting specification with lags 1, 2, and 12 augmented with
lagged values of the first principal component of the data, the default yield and term spread.

The bottom panel of Table 2 shows that, for the full test sample, all forecasting methods produce
lower MSFE values than the benchmark. The pooled, RE, FE and EB forecasts reduce the average
MSFE of the benchmark by around 12%, while the forecast combination methods reduce it by 7-
10%. Interestingly, when the predictors are close to their sample mean, the lowest MSFE ratios are
produced by the three forecast combination methods, while conversely the EB scheme performs best
when the predictors are further removed from their mean.

The EB forecasting scheme performs particularly well overall, beating the benchmark model’s
accuracy for 98% of the variables followed by 97% for the individual weights, 73-79% for the pooled
and FE combinations and around 50% for the RE and FE schemes. As in the first application, these
percentages are notably lower for predictors close to their mean and higher further away.

The EB forecasts also produce by far the highest frequency with the smallest MSFE values overall
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(39%) followed by 20% for the pooled and individual forecast combination scheme. This is matched
by very low probabilities of producing the worst forecast which never occurs in our sample for the
EB method or any of the three forecast combination schemes but is far more likely to occur for the
benchmark (43.9%) and pooled forecasts (39.6%).

Our evidence is summarized the probability density plots for the MSFE ratios in the right panels
of Figure 1. The figure clearly highlights the pronounced dispersion and thick right tails of the
MSFE-ratio distribution for the pooled forecasts. The distributions of MSFE ratios of the EB
and combination approaches are far more concentrated and less asymmetrical. For values of the
predictors farther away from the mean, the tails of the densities are somewhat thicker, with the
EB approach standing out as having the thinnest right tail and, hence, the lowest probability of
generating forecasts less accurate than those from the individual-specific benchmark.

Turning to the DM test results for the CPI inflation data in Table 3, all panel models generate
significantly negative DM panel test statistics and so their associated forecasts are significantly
more accurate, on average, than the individual forecasts. The pooled, RE, and FE models perform
somewhat worse in this application, as the number of individual CPI series for which their forecasts
are significantly more accurate than the individual-specific forecasts is smaller than those for which
the opposite holds. Conversely, the EB and combination forecasts continue to be significantly more
accurate than the benchmark forecasts for between 50 and 137 of the individual CPI series and are
only significantly less accurate for between zero and 23 series. The EB and individual combination

approaches perform particularly well in this application.

7 Conclusion

We provide a comprehensive examination of the out-of-sample predictive accuracy of a large set of
novel and existing panel forecasting methods, including individual estimation, pooled estimation,
random effects, fixed effects, empirical Bayes, and forecast combinations.

Our main findings can be summarized in three points. First, we find that many panel forecasting
approaches perform systematically better than forecasts based on individual estimates. For panels
with a small or medium-sized time-series dimension 7T—a setting relevant to many empirical appli-
cations in economics—our Monte Carlo simulations and empirical applications demonstrate sizeable

gains both on average and for the majority of individual units from exploiting panel information.
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Second, our analytical results and Monte Carlo simulations show that one should not expect a
single forecasting approach to be uniformly dominant across applications that differ in terms of the
cross-sectional and time-series dimensions, strength of predictive power, and degree of heterogeneity
in intercept and slope coefficients along with how correlated this heterogeneity is.

Forecasts based on pooled estimates are most accurate only in situations with little or no param-
eter heterogeneity and a small T dimension, while forecasts based on FE and RE estimates perform
relatively well mainly when heterogeneity is confined to model intercepts and 7" is small. Neither of
these approaches perform well in settings with high levels of heterogeneity where individual-specific
forecasts tend to perform better, particularly if 7' is relatively large. By over-weighting forecasts that
perform well and underweighting forecasts that perform poorly, forecast combination and empirical
Bayes methods manage to produce the most accurate forecasts across a broad range of settings.

Third, the panel forecasting methods differ in terms of their ability to reduce the probability of
generating very poor forecasts for individual units in a cross-section. While the individual, pooled,
random and fixed effect estimation methods perform poorly in some of the simulations and empirical
applications, the forecast combination and empirical Bayes methods rarely generate the least accu-
rate forecasts for individual units and retain some probability of being the best forecasting method.
These panel forecasting approaches therefore come out on top of our analysis.

In a nutshell, our simulations and empirical applications suggest that forecast combinations and
Bayesian panel methods offer insurance against poor performance. Compared to the alternative
forecasting methods we consider, this better “risk-return” trade-off makes the combination and

Bayes methods attractive in forecast applications with panel data.
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Mathematical Appendix

A.1 Lemmas

Lemma 1 Suppose that Assumptions 8 and 9 hold, then for a fixed T' > T we have

Qnr —E(Qnr) = Op(N7?), and Gnp — E(Gnr) = Oy (N_1/2> ; (A1)

and
Qnr —E(Qur) ™' = 0,(N72), (A.2)

~ _ N _ _ N — T
where Qnp = N 121‘:1 Qi dnr = N 1Zi:1 qr, Qr =T 1Zt:1 witw;ta and q;p =

T-1 23:1 wjw),n;. Further, under Assumptions 3 and 5

E(Qnr) = Qn, and E (@n7) = Gy, (A.3)

where QN =N-! sz\il Qi? ay = Nt sz\il q;, Qz = E(witw;t)7 and q; :E(witwétni) :
Proof Note that
N N
Qnt—E(Qn7) =N~" Z [Qir — E(Qi7)], and gnr—E (gy7r) = N~ Z [air — E(qi7)]-

=1 i=1

Under Assumptions 3 and 9, the elements of Q;7 —E (Q;r) and g;7—E (g,7) are independently

distributed with mean zero and finite variances. Therefore, (A.1) follows. Also

|@xr —E@uo) 7| = [ Qur [@ur —B(Qur)] E(@ur) |
< |@vt]1@sr — B @)l [E @)

A

and, by Assumption 8, )QJ_\flTH = Amax (Q]_VlT> < C, and HE (QNT)_IH _ HQI_VlH _ o).
‘QIV;*E(QNT)_IH has the same order as HQIVIT*E(QNT)_lﬂ = 0,(N"1/2),

as required. Result (A.3) follows from the stationarity properties, @Q; = E(w;w},) and

Hence,

A-1



q; :E(witwémz‘)-

Lemma 2 Under Assumptions 1-9

sup E H\/T (92 — 9i> ‘S <C, s=1,2, (A4)
i, T
where 6; — 8; = (W W ;)" 'W'e;, and

<c, (A.5)

-1 _ —_1 -
0—0;,=-n,+Qnrdnr + QnréNnT-

Proof Since H\/T (91 — 91’)

< [|Qir [[|T71/2Wies]|, then

V7 (8- )] < @ [ wie

and by the Cauchy—Schwarz inequality

IN

supEH\F(a —0)

4) 1/2

1/2
= {supE [)\fnax (Q;Tl)]} <supEHT 12wie,

0T

(supE HQ H ) (supE HT*1/2W§EZ-
i, T

)1/2

Both of the terms on the right hand side of the above are bounded under Assumption 4, and we
have supLTEH\/T (él - 0i>
and result (A.4) follows. Regarding 6 — 6;, we first note that

2 .
< C. This result in turn implies supi’TEH\/T (Oi — Oi)

‘<C,

I+ ||@xe | lawrl + |@x5 | 1€

and

<slmi+ (xan ) (sra) s (s]a]) " (Blew )
(A.6)
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Under Assumption 5, E||n;|| < C' and supz-,tEHwitwgtm\F < C. Also by the Cauchy-Schwarz

inequality
1/2 1/2
B lfwaeil” < (Ellwall*) ™ (leul')

and, under Assumptions 1 and 3 we have supi,tE||wit5itH2 < C. Then, applying Minkowski’s
inequality to &y = N 1T PSN ST e,
N T
_ _ L on1/2 L 1/2
Ellénrl, = (EllEnrll’) ™ < N7 303 TE fwicully < sup (B fwasal”)
i=1 t=1 b
. =2 o . _ IRy
and it follows that EHENTH < C. Similarly, since gyp = N7IT 12;11 Zthl wirwt,mn,;
1112
and sumeHwitw;thg < O, then E||gyr||> < C. Also, by Assumption 8, HQN;H =
Amax (Q&?) < C. Using these results in (A.6) now yields (A.5).

A.2 Proofs of the propositions

A.2.1 Proof of Proposition 1

Let P; = W (W W ;)~!. Using (17), note that

E (riv lei, Wi, wir41) = (eiPiwiri1) E (eir41 |€, Wi, wiri),

and, under Assumptions 1 and 2, E (¢; 741 |€;, Wi, w;r41) = 0, for all i. Hence, unconditionally

E (ryr ) = 0. Furthermore, |rir| < ||e;P;]| ||w;r+1]| |ei,r+1]| and |e; 741]is distributed independently

of w; 41 and T _1€;Pi. Hence by the Cauchy—Schwarz inequality

911/2 1/2
Blrir| < [Bl|eiPi]*] " (Bllwiral®) © Bleiral .
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Again, under Assumption 1, sup; 7 E|e; 741 < C and sup; r E |Jw;.ri1]|> < C. Also, since Q7 is

H =\ ( ;Tl) and we have
epil? = [T ew wiw) P < Q) [T ewe | A7
&34 [T~ eiWi(T [§ e’ i (A7)
< Max (Qir) HT‘lwéaH :

By the Cauchy-Schwarz inequality and under Assumption 4

1/2 1/2
supE HE;PiHQ < {supE [A?nax (Qz_Tl)] } sup HT_1W;.€1~H4] < C,
i, T i, T 0T

1y 2

and sup; r E |riv| < C. Finally, under Assumption 9, r;7 are independently distributed over i. Then,

by the law of large numbers for independently distributed processes with zero means we have
Ryt = Op(N_l/Q). (A.8)
Consider now Syt and note that

N N
Syr=N"1 Z E(sir) + N1 Z [sir — E(siT)]

i=1 i=1

where s;7 is given by (18). Under Assumption 9, s;7 is distributed independently across i, and the

second term of Sy7 will be O,(N~/2) if sup; r E |si7| < C. Also

9

Isir] < llwira || Qi) HT‘l/QW’sl

and sup; 7 ||lw; 41| < C. Hence, sup; r E |s;7| < C follows if

sk || @z | [ wie | < c
1y

This condition is satisfied by Assumptions 1 and 4, noting that by the Cauchy—Schwarz inequality

4:| 1/2

Q) 7w,

| < [e@at)” [e]rewe

A4



=)\

4
‘ ‘ max

and | Qi1 (Qi1' ). Therefore, Syr = E (Sy1)+0,(N~Y2), where E (Syr) = N7 SN E(sir) =

hnT, and the result in equation (19) follows, with hn7 given by (20).
A.2.2 Proof of Proposition 2

The average MSFE of forecasts based on pooled estimates is given by (21) which we reproduce here

for convenience.

N N N
N~ Z Ep=N" Z e+ N Z wi p MWt 1 + Sy + 2RN i, (A.9)
i1 i1 i1
where
~ P ~ 1 _ o ~—1 ~ ~_1 =
Snr+1 = AntQNTRNT11QNTANT + ENTRNTRN T 1R NTENT (A.10)

o ~—1 o =1 _ o =1 = 1 _
—2qn7QNT GnTi1 — 26NTRNTAN 111 + 26 NTRNTR N 741QNTANT

N N
5 - D -
Rygsr =N Zrl;wi,Tﬂ%Tﬂ - (q,NTQNT + f/NTQNT) (N ! Z wi,T+15i,T+1> , (A11)

i=1 =1

and

N N

A -1 / ~ -1 /
Qnr1=N Z Wi T1W; pyp, and @y =N Z Wi T41W; 7117 (A.12)
i—1 =1

Under Assumption 7, & yp = O, (N_l/Q). Using Lemma A.1, we have Q&lT = Q;\;l + 0y (N_I/Q) =

Op(1), and similarly gy = Op(1) and gy 141 = Op(1). Using these results in (A.10) we now have

~ P 1 _ =1 _
Snr+1 = AnTQNTQNT+1QNTANT — 2ANTQNTANT+1 + Op (N 1/2> . (A.13)

Note that under stationarity (see Assumptions 3 and 5), E (wLTng’THni) =gq;,E (wi,T+lw;,T+1> =

Q,;, and consider

o o A—1 = ~1 _ _ =1\ /A - =
AnTQNTQNT+1QNTANT = (AgNT + ay) (AQ,NT + QN ) (QN,T+1 - Qn + QN)

__1 _ _ _
X (AQvNT +Qy ) (@nre1 —An +an)
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where (by Lemma A.1)
Aot =Qnr — Q' = Op(NT'2), Aynr = Gyr — @y = Op(N71/?),

and Qp and gy are defined by (8) and (10), respectively. Also note that

N

Qv = N 'Y E(wirnwlrg) + 0)(N %) = Qu + 0p(N72),
i=1
N

Inrn = N B (wirpw)rmg) + Op(N7V?) =gy + Op(N7/?).
=1

Hence, it readily follows that

Nt @@y @nrdnr = InQy dx + Oy (N7/2). (A.14)
Similarly, q;\/’TQ;VquN,T-H = q‘[’NQ;Vlth + 0, (N_I/Q) , and as a result

SNl = ~@vQN @y + O, (N‘l/Q) )

Finally, since e; 741 (which has zero mean) is distributed independently of w; 41 and n;, under

Assumption 9,

N N
N7 Z niw; i1 = Op(N~Y2), and N1 Zwi,T+15i,T+1 = O,(N~/?),

i=1 i=1
and Ry7y1 = Op(N~'/2), noting that ((j’NTQJQlT%—gNTQ;V}[) = Op(1). Using this result and
(A.14) in (21) now yields

N N N
_ ~ _ _ -t A—1_ —
Nt Z 612,T+1 =N~ Z 512,T+1 +N7! Z w’i,Tﬂm?ﬁwi,Tﬂ —qyQy Ay + 0, (N 1/2) - (A15)
i=1 i=1 i=1

Also, under Assumption 9, wj ., 1 1;m;w; 1 is independently distributed over i and we have, noting

2
that under Assumption 5, supLTE‘w;,THnm;wi’TH‘ = supLTEH'w;’THm < C,

N N
Nt Z Wi mimwire = N Z E (w; rmmwirin) + Op (Nfl/Q) :
=1 =1
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Using this result in (A.15) now yields equation (22).

To establish part (b) of Proposition 2 note that the first term of Az, N71 Zi\il E ('w;,THnm;wi’TH) =
N1 Zf\i 1 E (w;,T +117@-)2 > 0, arises irrespective of whether heterogeneity is correlated or not. The
second term, q NQ]_Vlth\,, enters only if heterogeneity is correlated. The balance of the two terms
(AnT), can be signed under stationarity where E ('w;’THnm;wi’TH) = E (w),nn,w;). In this

case, we have
N
_ A=l
Ay=N"" E E (wémméwit) —anQn an- (A.16)

=1

To establish that the net effect of the two terms in Ay7 is non-negative, we first show that the
sample estimate of Ay7 can be obtained as the sum of squares of the residuals from the pooled
panel regression of njw;; on w;;. Consider the panel regression njw;; = ¥'w; + 4, and note that

the pooled estimator of v is given by
N T -1 N T :
ANt = (N_lT_l Z Z witw;t> NI Z Z wiwyn; = QnrdnT,
i=1 t=1 i=1 t=1
which yields the residual sum of squares
N T N T )
D SLERER ) ol -
i=1 t=1 i=1 t=1
By construction, Anr is non-negative and is given by
T N
2 1A A1
Ay =T "N wimmiwi — @yrQurdnr > 0.
t=1 i=1

This result also holds for a fixed T and as N — oo (applying Slutsky’s theorem to the second term):

hm ANT: plim N ™ lp—1 U
TS Sz
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A.2.3 Proof of Proposition 3

Using (14) and (15),

N N N
Nt Z € T+16iT+1 = Nt Z E?,T-H + Nt Z(Gl — Oi)’w@Tng’TH(O - 6,) (A.17)
i=1 i=1 =1

N N
—1 /) / -1 0 /
—-N E (0; — 0)wiriieir1 — N E (0 —6;)w; 118741,
=1 =1

where 8 — 0; = —n; + Qnrdnt + Qnr&ny, and 0; — 0; = (W, W,;)~'W'e;. Noting that the third
term in the above, apart from the minus sign, is the same as Ry7 defined below (16), by (A.8) it

follows that

N N
N' (60— 6:)wiriaciris = NV rip = Ryr = Op(N7/2). (A.18)
i=1 =1
Further,
N N X N
NS (0- 0 wiriicirys = —N'Y mwirnagira + Qurdnr (N_l > wi,T+15i,T+1>
i=1 i=1 i=1

N
=1z _
+Qn7rENT (N ! Zwi,T—l-lEi,T-',-l) .

=1

By Lemma A.1, Q]_Vlf = 0,(1) and gy = Op(1), and by Assumption 7 ,&xp = O,(N1/?).
Also, under Assumptions 1 and 6, n§w¢7T+1€¢,T+1 and w; 7116, 741 have mean zero and first order
moments. Hence, given Assumption 9 we have

N

N~ Z(é —0,)w; 1141 = Op (Nfl/Q) : (A.19)
i1
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Consider now the second term of (A.17):

~

N7'Y (6 - 0:)wirw) 1 (0 - 6))

WE

1

-
Il

_ ~_1 _ 1= ’ )
= N1 (—77i+QNTqNT+QNT€NT) wi’T+1w;,T+1(W;W1;) lwgsi

M-

@
Il
,_.

- N—

M=

— ~—1 _
(—772 + q,NTQNT> w; o w oy (WiW,) ™ Wie;

~.
—

N
__1 _ _
+EnTQNT [N ! Zwi,THwQ,TH(WQWi) 1W§ei] ,

i=1

where, as noted above, E/NTQ]_VlT =0, (N -1/ 2). Also, under stationarity (Assumption 3) and using

A.1) and (A.2) (See Lemma A.1), Gy = Gy + Op (N~1/2) and Qil :QA—I—O N—1/2) and we
NT N TUp NT N P

have
N ~
NTUY (0i = 0 wiriawig41(0 = 0;) = (9107 — gar) + Op(T/2NT'2),
i=1
where
3 1
GINT = [Nl ZSQWZ-(WQWi)1w,~7T+1w;’T+1] Qv'an,
i=1

N
-1 / ! -1 /
gt = N7 W (WiW) ™ wirw)pym;.
i=1

We also note that under Assumptions 3, 4, 8 and 9

gl,NT == E (gLnT) + Op (N_l/Q) , and QQ,NT = E (gQ,NT) + Op (N-l/?) .

Hence,
N A~ ~
Nt Z(GZ — Hi)’w@Tng,TH(B —-0;,)=E (gl,nT) —E (g2,NT) —i—Op (N_l/Q) —|—Op <T_1/2N_1/2> .
=1

Substituting this result together with (A.18) and (A.19) in (A.17), we obtain

N N
NN eirafigi = N7US eng + T g + Op(NY2) 4.0, (T7V2N12) | (4.20)

i=1 =1
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where Yn7 =T [E (91,n7) — E (92,n7)], or more specifically,

Uy = TN~ 1ZE (W {(WiW ) wi w7 ] QN (A.21)

=1

N
~TN™ Z E [ngi(W;Wi)_lwi,TJrlw;,Tﬂm] .
i=1

Finally, using (A.20), together with (19) and (22), in (31) now yields (32).

A.2.4 Proof of Proposition 4

To compare the FE forecast to the individual forecasts, rewrite (14) as &, 7+1 = €i 741 — (G — ;) —
/ 3 A = =/ 3 5 = =/ 3
:I:Z-7T+1(ﬁi—,8i), and note that &; —o; = &1 —Z;p (ﬁi — ,8i>. Therefore, é; 741 = & 17+1 _mi,T—l-l(IBi_

~FE = p /= = _ =
3;). Furthermore, &iTy1 = i T4l — (Bre — Bi) Tir+1, where & 141 = €741 — &1 and Tjpy) =

TiT+1 — ZiT,

Bi—B; = (X|M7X;) 'XMre; = Q;ﬁgﬁiT,g,
A~ ~ 1 _ ~_1 —
Bre —Bi = —Mig+Qnrgdnrs+ QnrsENTs

N
Qz’T,,B = (T_lX;MTXi)_la fz'T,,B = T_l/QX;MTEzH and ENT,B =N"! Zsz’T,,B = O;D(N_UQ)'

Hence,
N
N~ Z éE%JrléLT-f—l = - Z Eir+1 (A.22)
i=1
+N ! Z )T 1T T+1(5FE Bi)
N
-N~! Z(ei,TJrl — &ET)Z) 1 [(5FE - /Bi) + (B — 51‘)] :
i=1

Under Assumptions 4 and 9 we have

N
1 = —
Z (BFE z) T T+1E6T = N + Op(N 1/2).

z:1

A-10



Additionally,
1Z$ZT+1 — B))Eir1 = cnrp+ Op(N71/?),

where cy7 5 = -1 ZZ 1 E [ zT+1(X M7 X,;) ' X! Mre;&ir| . Details are in the Online Supple-

ment, where we also show that

N
- Z & =N &1+ harg — 2enmp + Op(N7?),
i=1
X' Mypeie! My X; 1 = B
where hiyr5 = N~! Zz 1 B [ zT+1QzTB (%) Qz‘Tl,ﬁwLTJrl} yand Qurg = T~ (X[ M1 X).

Using this, we have

N
NS Ern®irg [(BFE - Bi) + (B — Bi)} = kB 4 enr g + Op(N7V/2). (A.23)
=1
Also
N A~ A
N! Z(/Bi —B) (Zir+1%i7r11) (Bre — B))
=1

N
_ — _ _ — — | _ ~ 1 —
TVANTY (T V2l M TXz') Qir s (1T i) (—m,ﬂ + QN1 sanTs + QNTﬂENT,ﬁ) -
i=1
. p _ -1/2 A-1l _ A-1 -1/2 ~ _ ~
First, Eyp 5 = Op(N~Y2) and Qnr 5 = Qg+ Op(N~Y?), where Qy 5 = E (Qnrp), (see Lemma
A.1). Hence, for a fixed T' > Ty

N

_ _ B _ _ - B
N—1L Z (T 1/2€;MTX2') Qle,ﬁ (:IZZ‘7T+1:13;,T+1)] QNT,,B&NT,B — Op(N 1/2>.
i=1

Also, under Assumption 9,

N

N7 (T2 M X0 ) Qi (B ) i
=1
N
= NT'Y E [( e MrX; ) Qirp (11 r11) ’72',/3] +O0,(N712),
=1
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and

N
N1 Z (T—l/Qs;MTXi) Q;Tlﬂ (%i,T+15:U;7T+1)
=1

N
= NS E[(TTV2MrX) Qs (@ir @) | + Oy (N 7).
1=1

Then

N

Nt Z(@Z - 51)/571,T+153§,T+1(BFE - B;) =T 2k + Op(T_1/2N_1/2)7 (A.24)
i—1

where
N
— _ 1 = - A1
JF\}% = N 1 ZE |:(T 1/2€§MTXZ'> QlTl,,B (.’L’i,T+1mg7T+1)} QN,BqN,,B
i=1
N
-N"'YE [(Tﬁl/zegMTXi) Qi s (Tir 1T ri1) 771‘,,3] : (A.25)
i=1
Using (A.23) and (A.24) in (A.22) yields

N
SINCLFE 4 eI, 2 ~1/2.,FE
N E éirpiiry1 = N E:gi,T+1+T 2N
i=1 =1

— (&R + enrg) + Op(NTY2) 4 0, (T~ V2NY/2),
Substituting this result together with (S.22) and (27) in (38) now yields equation (39).

A.3 Estimation of Combination Weights

There are three components in the forecast combination weights, given by (32), namely An7, hyr
and 7. To establish that Ayp () = N7t Zf\il wg’Tﬂﬁiﬁgwi’Tﬂ is a consistent estimator of

AnT, recall that

~ _ =—1 _ ——1 -
N, =mn; + QZ"_Z}SZ'T — QnrdnT — QNTENTS
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where

T N
Lir =T '"Wiei=T""Y wyes = 0, <T*1/2) , and Eyp=N"') &7 =0, (N*1/2T*1/2> _

t=1 i=1

Then

N
Anr(p) = N7 Z W, 7 Wi, T+ 1
i=1

N
- - ~—1 _ ~—1z
= N Z Wi (nz’ + Qi &ir — Qnrdnr — QNTENT>
i=1

- ~-1 ~~1 7
X (Th‘ + QiTIEiT — QnraNT — QNTﬁNT) W; T+1

N N

_ Nfl / Io Nfl / -1 / —1,.,.

= W; 741 MM Wi T+1 + W; 741 QiT €iT€iTQiT Wi T+1
i=1 i=1

N N
Nfl ! AL = = A1 N*l I A—1 7 = =—1
+ E w; 71 QNTANTAINT R NTWi T+1 + g Wi p 1 QNrENTENTR NTWi T+1
=1 i=1
N N
oN—1 / 5/ Q—l ) oN—1 / —/ Q—l )
+ Wi p1Mi8ir & Wi, T+1 — wW; 71T ANTW NT Wi, T+1
i=1 i=1
N N
—1§ ' ! 2 I -1 / 1 & A1
—2N wi,T+1ni£NTQNTwi,T+1 — 2N g wi,T+1Qz‘T éiTqNTQNTer”TJ’,l
i=1 i=1
N N
-1 / -1 = ~—1 -1 ’ ~—1 _ = ~—1
—-N § :wz’,TJrlQiTﬁiTﬁNTQNT'wi,TH+2N E Wi 1 QNTANTENTRNT Wi T 41,
=1 i=1

and we have that

N N
N Z w;,T—&-lQi_TlgiTE;TQi_lei,T—&-l = Nt Z wi 1B (Q;TlgingTQi—z}) wi i1+ O, (N—1/2>
=1 i=1
E(QréréirQi) = TPE(QrWieeiW,Q7) =T""07Q;!
N N
N Z w1 §ir€irwiTi1 = Nt Z w; B Q7 &ir€ir Qi) wiri1 + Oy (N—1/2>
i=1 i=1

- 0, (]\7__1/2> +0,(T™Y),

N N
N1 ! AL g E Ok — a0k N1 , / ~1 _
wi,TJrlQNTQNTQNTQNTwz,T-H = qnrQnN7 Wi T+1W; 741 QnTaNT
=1 i=1

= qNQ;Vl‘TN + Op(Nfl/Q)’
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N N
-1 / ~—1 = =/ ~—1 =/ ~—1 —1 / ~—1 = —1m—1
N E ’wi,THQNTENTfNTQNT’wi,TH =&EnTQNT (N E :wi,T+1wi,T+1> Qnrénr = Op(N T T77),
i=1 =1

and

N N
_ A1 A1 _ R _
N~ Zw;,T—&-lniqlNTQNTwi,TJrl = anrQnr <N ' Z’wivTJrlw;,TJrl"h) =qnQn AN +Op(N 1/2)-
i=1 i=1

Also since E(Q' &7 [wiry1,m;) =0,

N N
—1 / / —1 _ —1 / -1 / _ —1/2
N § wi,TJrlniEiTQiT wiry1 =N E €iTQiT ('wi7T+1wi,T+177i) =0y (N / ) )

i=1 i=1

N

N
_ = —~—1 _ _ _ _
N~ E ) €N Qurwirsr = N7° E ErQir (wirpiw)r1m;)+0, (N7%) =0, (N 5/2> ,
i=1 =1

N N

-1 -1 - ~A—1 - ~—1 -1 -1 —1/2

N Zw;,T+1QiT EirdnrQnrwir+1 = AnrQnr <N Z (wi,T+1w;,T+1) Qir EiT) =0p (N / ) )
i=1 =1

N N
_ _ =7  A-1 7 A1 _ _ e
N Z w1 Qi €rnrQnrwiri = EnrQnr (N ' Z wivT+1w/i,T+1QiT1£iT> = Op(NT'T71/?),
i=1 =1
and
N N
— ~—1 — = ~—1 = ~—1 — ~—1 — — —
N~ Zwé,T—&-lQNTQNT&NTQNTwi,TJrl =EnTQNT (N ' Zwi,TJrlwé,TH) Qnrdnt = Op(T VN 1/2)‘
i=1 i=1
Overall
N
A _ - - _ _
Anr () =N"" Zw;,T—&-lT/iTl;‘wi,T-i-l —qNQn dy + Op (N 1/2) + Op(T 1),
i=1

or equivalently

N
_ _ A—1_ _ _
=N~ ZE (w;,T-&-lnz‘n;wi,T-i-l) —qnQn an + Op (N 1/2> + Op(T 1)-
i=1
In combination, ANt (1) is a consistent estimator of Ay for large N and T. In the case of

strictly exogenous regressors, AnT (1) is a consistent estimator of Ay for a fixed T, so long as

E <9Z) exits, since in that case E (é] — 0j> = 0 for all j.
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Now consider the second component of the weights, namely hy7, and We will show that a

consistent estimator is

N
) . - B In(N
hyp =N~ Z w;,T—HQz‘TlﬂiTQilei:TJrl =yt +0p (N 1/2) O <\(FT)) 7

where Hyp = 62T S wiw!, . where 62 = Y"1 €2 /(T — K), instead of T~ 3.1 &2 (wyw!)).

Note that

N N

2 -1 / i -1 —1

hnt —hyt = N Z w; 71 Qi HirQir wiri1, —N ZE (siT )
=1 ;

where s;7 is defined by (18). Since N"' SN E(sip ) = N'SN sir + 0, (N—1/2),

/
O'QT 1 Zthw W 618 W

hny —hyr = N7 Z w1 Qi T

Q7 wir1+ O, <N71/2>

WieielW;\ _ _
= N7 ZU w; T-HQzT wir1 — N© sz 1@ <21TZ> Qi wiri1+ Oy (N 1/2>

=1
= Din1t—DaynT + O, (N_1/2> :

Now consider the decomposition

N
—1 ~2 —1
Dint = N7'Y 67wir Qi wiry = N™ ZU wip (QF — Q7'+ Q7 ') wirs
=1
N
-1 1 —1 —1
= ZU wz T+1Q sz+1+N ZU wz T+1 (QiT -Q; )'wi,T+1

=1

Similarly

w In(N
< sup || z‘,T+1”28up6i2 sup H(Q;Tl - Q;l)H =0, <n()> ’
7 1 3

-1 -1 -1
H ZU wz T+1 ZT - Qi )’wi,T+1 JT
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and sup; (67 — 02) = O, (IH(N)). Hence

N In(N)
Dinr = N7') 6wl Qi 'wirs +0p <>
=1 \/T

N N
- _ _ . _ In(N
= N7 Z Ugw;,T+1Qi 1'wi,T+1 + N Z (01'2 - 02'2) w;,T—HQi 1'wi,T+1 + Op <\(ﬁ))

al In(N)
= N Zalzw;,TJrlQi_lwi,T-ﬁ-l +0p < JT >

i=1

Similarly, and noting that E (M) = UZZQZ», we have

N We. e W
D _ Nfl / -1 iEiE’i i —1 .
O NT = wi,T+1 Qir — 7 Q;r wiT+1

_ oyl sz @ (W leielW,; ) Qw1 + 0, (m(\/]%])>

_ _ Wi€i€in‘ _ _ In(N
-7 12“’;’”1@‘ ® <T> Qi wirsr + Op(N 1/2>+0p< \(/T)>
i=1

N
= N7'Y otwl @ wirs + Op(NTV2) + 0, <

=1

Hence,

hnt — hnt = Op(N~Y2) + 0, (

as desired.

Finally, turn to ¥ 7. The asymptotic bias, 0, — 0;, for each i can then be estimated using
bootstrap or half-jackknifing. The sieve bootstrap could be used for a pure panel AR model but,
generally, not with weakly exogenous regressors. However, the half-jackknife estimator can work
more generally. For a give T, split the sample in two equal parts—one observation is dropped if
T is an odd number. Denote the estimators based on the two sub-samples by 0, and ;. Then

E (él — 01-) can be estimated by
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A consistent estimator of ¥ 7 is then given by

N /
. B 1 /- . .
ony = |TN7! Z [2 (02(1 + Bib) 0] Wi T 41W; T+1] QnrdnT (M)
=1
N 1 /. ) !
_TNflz { (0w+0 ) 0] W TH1W; 7417
=1

Estimating the weights in combination of individual and fixed effects forecasts

Similar to the derivations above, it can be shown that the components of the weights in Proposition 4

can be estimated as follows. First,

~

N
ANt = NZ«%mm 67 p%i 71 — Avtys (Tlip) Qnr pdnr,s (M) - (A.26)

5 ~ N = = _ 2, _ _ N ~ o
U 51‘—% > i1 Bis Tiry1 = Tir1—Zir, Qnrg = N =15y XiMrX,; and anT3 (m,g) =
NI XM Xan,

Next,
N
hNT7B = N*l Z i;,T+1Q7j_’1"176HiT7ﬁQZ'_TI’BC:Ui7T+1, <A27)
i=1
Hirp = it Sl By, 67 = €8:/(T — K) and & = yir — 9;wit- Furthermore,
N / 1
"FE -1 ~ ~ _ _ _ )
Nt = TN Z <ﬁFE - 5FEJK) Ti 71T 1 QN AN (M g) (A.28)
i=1
N ~ A~ /
~TN" Z (IBFE - 5FEJK> Ti 71 T 1M g
i=1

where Brpyk = 28rg — : (BFEa + BFE,I)) is the half-jackknife estimator of Chudik et al. (2018).
Finally, the weights include the difference between
N N

1 A I - R 1 A I -
CNT = Z (ﬂFE - @) Tir+i&r  and  Enrg = > (ﬁi - 52') T 7+18T-

i:1 =1
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However,

Mz

N — EnTg = <5FE z) Tir1éir = Op(T ™)

A.4 Panel AR(1): An example of correlated heterogeneity

Correlated heterogeneity can arise in many contexts. One important example is dynamic panel data
models where, barring special cases, heterogeneity is correlated by design. As a simple example,
consider the stationary panel AR(1) case where y;s = Biyit—1 +¢ei, fort =...—2—-1,0,1,..., T, T+
1,...,and sup; | 5;| < ¢ for some positive ¢ < 1, and j; follows a random coefficient model 3; = Bo+n;,
where 5y = E(f;), and n; is suitably truncated such that the stationary condition sup; |3;| < ¢ is
met.

Suppose our objective is to forecast y;741 based on the observations {y;,t = 0,1,2,...,7}.22 In
the context of the general linear model analyzed in the paper, w;; = y;:—1 and 6; = 3;. It is easily
verified that our Assumptions 1-9 cover the dynamic case where one or more elements of w; are
lagged values of y;:. Forecasts based on pooled estimates, which incorrectly assume 3; = 3y generate
a heterogeneity bias, Ay, given by (A.16). In the present example ¢; = E(yzt_lm>, Qi = E(yzt_1>,
and

2
N [N_l YL E (yf?,t_mi)}

Ay =N"D"E(yim}) -
i=1 o N1 Zz]il E (yi?,tA)

Y

where ¢; measures the degree of correlated heterogeneity. To derive ¢; for the AR model, note that

= Bieii-s=>_ (Bo+n) it s (A.29)
s=0 s=0

SO ;¢ is a non-linear function of 7;, and, in general, ¢; = E <yf t_177i) # 0. This shows that

heterogeneity in panel AR models generates correlated heterogeneity as is also implicit in the analysis

22The assumption that the process for y;; has started a long time prior to date 0, is equivalent to assuming that ;o
is drawn from a distribution with zero mean and variance o7 /(1 — 7).
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of Pesaran and Smith (1995). Using (A.29) we have

o2
E(yi) =0, Q; = E(yizt) =K (yzt,l) =E <1 — /32> for all ¢,
771'0'1-2 2 2 771'20'@'2
ql_E yzt 1771 ZE zTh —E 5 ,andE(yitni):E — -
1- Bz 1- 5l

In this simple example, heterogeneity is uncorrelated only if Sy = 0 and 7; is symmetrically dis-

2
tributed around 0. This follows since when Sy = 0 we have ¢; = E (mi]?) and under symmetry

nio?/ (1 — ni) is an odd function of 7;, which yields ¢; = 0. But when Sy # 0, then ¢; # 0 even if
7; has a symmetric distribution. The expression for Ay is strictly positive irrespective of whether

¢; = 0 or not. Under stationarity, Ay simplifies to

B (s2am)]

E (s20)
B ) B (%) - [ (25)]
B (%) |

Let fi = omi/+/1 — Bf and g; = 0;/4/1 — Bf, and note that the numerator of Axr can be written as

Aar = E(yin}) —

(A.30)

E(f2)E(¢?) — [E(figi)]* > 0, which establishes that Azg > 0, in line with part (c) of Proposition 2.
The magnitude of Ayr depends on the joint distribution of 8; and o?. As an example, consider
the case where o2 and ; are independently distributed, E(0?) = 02 and 7; ~ Uniform(—a/2,a/2),

for a > 0.23 Then,

2
2 i _ o i i
w=rr () = T (=) o ()

To derive the expectation in this above expression note that for a given B, such that B? —a?/4 > 0,

we have

(s25) -t e (2332

23Note in this case n; is symmetrically distributed around 0.
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Table A.1: Numerical values for E (yit_lm> and A for the panel AR(1) model

Bo E(yZ,_1m) Aar
0.3 0.100 0.117
0.45 0.316 0.163
0.49 0.657 0.211

0.4999 1.783 0.328

Note: The numerical values are

based on a = 02 = 1.

Using this result, and setting B = 1+ 5, we have, for (1 + 39)? > a?/4,

i . (1+56o 1+ B0+ a/2
E<1+ﬁo+m)_1 ( a >1n<1+50—a/2)'

Similarly, again for (3o — 1)% > a?/4,

G ) R e o) Rl I S K = |

Overall, assuming that a/2 < 1 — |y, we have

(O )mGmmon) - () (B 0n)

- (R0 s (RO

E (yf,t_lm) =

F1% %

To ensure that |3;| = |80 + ni| < 1, we require that a is sufficiently small relative to Sy and |SBy| < 1.

A sufficient condition for this to hold is that

|6il = 180 + nil < |Bol + [nil = |Pol +a/2 < 1.

We can now calculate E (yit_lm> for a range of values for By < 1/2. Using a = 1 and 0% = 1,
we obtain the values given in Table A.1.

In general, for a > 0 and |fy] < 1, E (y?’tflm) # 0, E (yztflni) — 0, only if a — 0. Since
n; ~ tidUniform(—a/2,a/2) is symmetrically distributed, then E (yﬁt_lm> = 0 for By = 0. But

Cov(yzt_17 7)3) # 0, even under symmetry and yzt_l and 7); are not independently distributed. For
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example, when 5y = 0, we have

E(y;n;) = o’E <1 ?n ) # E(y7)E(n}) = o°E (1 —177-2) E(n7).

When B; and o7 are independently distributed, using (A.30), we have

() () ()
B ()

We can derive an analytical expression for E ( - 62) noting that

1 1 (2 /01 1. (B+a/2
E<B+m> _a/a/2<B+77>dn_aln<B—a/2>’

Hence,

1 1
“(=m) = 2l e (awmmn) ()|
1

_ by <B0—1—1-a/2)+ 1ln<50+1+a/2)7

20 \Bo—1—a/2)  2a \Bo+1—a/2

or

Using (A.33) and simulated values of E (1 52) and E (1 62)’ we obtain the values of Aag for

a =1 and 02 = 1 that are reported in Table A.1 for 10,000 replications.
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S.1 Introduction

This supplementary appendix provides additional material underpinning the analysis in the main
paper along with a set of extensions to the Monte Carlo simulations and empirical results. We
begin by deriving in Section S.2 the pooled R-squared, PR?V, used in the Monte Carlo simulations
to target the predictive power of our panel forecasting models. We characterize PR%V as a function
of the underlying parameters of the DGPs and use this to calibrate the parameters used in the
simulations. Next, Section S.3 provides details of how we implement the estimators used in our

analysis. Section S.4 provides additional simulation and empirical results.

S.2 Derivation of the pooled R-squared PR3

Consider the panel data model

Yit = 0 + BilYit—1 + ViZit + Eit, (S.1)

Tit = Pai + ity &t = paibip—1 + Ozin/ 1 — p2iVit.

Further, Var(e;;) = 1, and Var(r;) = 1 as set out in further detail in Section 5. To simplify
the derivations, we treat z;; as strictly exogenous (no feedback from y;;—1) and assume that y; is
stationary and started a long time in the past. To deal with the heterogeneity across the different

equations in the panel, we use the following average measure of fit, for a given IV,

NN Var (64 |6, ©t)

PR%, =1 - , (S.2)
NN Var(yi 65, it )
where as before 0; = («;, 3;,7;). For the numerator we have
Var (it | 0;, 07, zit ) = 07 (S.3)
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To derive Var(y;; |0;, x;t ), we note that

Var(yt |05, 07, 24) = E [Var(yi |0, 07 yii—1,2i)] + Var [E(yie [0:, 07, yig—1, zit)] ,
E(yit ‘91‘7 0l Yir—1,%it) = i+ Bivis—1 + Vv, Var(yi ‘91'7 02 Yit—1,Tit) = 07
Var [E(yzt ‘9i7 02'27 Yit—1, xzt)] = 51-2Var(yit ‘91‘7 02'2, Tit) + ’YZ'QVM (wit) -
Hence,

W?Var(fl-t) + 01'2

Var(y;¢ }Bi, o2, 1) = - 2

79

Now using (S.3) and (S.4) in (S.2), we obtain

— N
2 Nt dis 01'2
PRN =1- 2 2 2 )
-1 N njogi+o;
N Zz’:l 1751,2

where o2, = Var(§;;). After some simplifications we have

PR _ by + (eny —an)
by + cn

_ N _ N 202, _ N
where ay = N"13°" 02, by=N"1Y.1, ?_5”_2” and ey = N7 Y000,
2

o2
1-p2°
When these parameters are distributed independently, as N — oo, we obtain
1
ov % B, by S EGAEERE (= ).

1—p?
o B E<UZ2)E<1—15,2>

Hence, using (S.5), we note that (as N — 00)

E(GAE(2)E (25) + [BODE (Z5) — E0?)]
E(GPE(@2E () + BOE (25)

PRY — PR* =
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Under our design E(c7) = 1, E(062,) = 1, and the above expression simplifies to

E(7f)E (1—163> T [E (ﬁ) B 1]
Etﬁ)E<1§ﬁ)*‘E(1iﬁ> |

PR? =

(S.6)

2

In the general case where o} is not distributed independently of 3; and N is finite we have

N—l N 2
PR%, >1—ay/ey=1— z]:\;:lzg
N1y T-57

In the case where 3; = By + 1,3, and 7;g ~ iid Uniform(—as/2, ag/2), ag > 0, we have (see also

(A.33) in the Appendix to the paper):

1 _ 1 aﬁ/2 1
E (1_ﬁz2> T ag f—aﬁ/Z 17(ﬁ0+n6)2d775

_ 1 [og/2 1 1
= a5 f_aﬁ/z [H,@wnﬁ - 17/30717/3} dng (S.7)

ag/2
_ ﬁ [In(14 Bo +np) — In(1 — By — Wﬁ)]_ﬁa;/z

a
_ 1 1+Botap/2 1—Bo—ag/2
Zr [ln <1+50—%/2) —in (1—50-&-(%3/2)} ’

assuming that
(1+ Bo +as/2) (1 + By — ag/2) > 0 and (1 — By — ag/2) (1 — Bo + ag/2) > 0,
or if
0<as<2(1-|Bl). (S.8)

It is easily established that E (ﬁ) — 17—153, as ag — 0.

Our Monte Carlo simulations target an PR? of 0.6. We do so by calibrating the values of the ag

and [y parameters. The values of the parameters used to this end are reported in Table S.1.

S.3 Details of the estimators

This section provides details on the implementation of the estimators and forecasts used in the

Monte Carlo experiments and empirical applications. Recall that the DGP, (47), in the Monte Carlo
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Table S.1: PR? for parameters of Monte Carlo models

ag o PRApx (Pya =0)  PRApx(pye = 0.5)

0 0.775 0.605 0.605
0.5 0.688 0.640 0.651
1 0.486 0.669 0.686

Note: The table reports the parameters for ag and [y in
the first two columns and the implied values for PR? in the

remaining columns.

experiments is
Vit = & + BiYii—1 + Vit + i = i + Bixir + eir = Owi + e, i ~ (0, Uiz)a (S.9)

fort =1,2,...,T and i = 1,2,...,N, where 3, = (Bi,v:), 0; = (2, 3}), xit = (yi+—1,2i)’, and
w;; = (1,x},)’. Here we consider a more general case where the dimension of ;; is k x 1 and that of
wj is K x 1, where K = k 4 1. In principle, x;; could include higher order lags of y;; and x;, and
other covariates. As in the main analysis, for simplicity we do not explicitly refer to the forecast
horizon, h, but it is assumed that x;; contains information known at time ¢ — h. Below we assume

a forecast horizon of h = 1.

Individual forecasts The individual-specific forecasts based on the data of a given cross-sectional

unit are

~ ~ ~ ~/
Yi;r+1 = duir + B p®ir1 = 0; pwiria (S.10)

The parameters are estimated using the estimation sample containing 7' observations: y; =

(yi1, Yi2s - - -, yir) and X; = (i1, X2, - . ., ;7). In matrix notation, the model is
Y; = ouTT + Xlﬂz +e;, =W,0;+¢;,

where 7 is a T'x 1 unit vector, W; = (w;1, wig, ..., w;r), wir = (1,x},), and g; = (i1, €2, ..., 1)’

The parameters are estimated as
> -1
/Bz',T = (X;MTXZ‘) X Mry,,
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N / -1 _y
dir = (TpMigTr) 70 My,

MT = IT —TT (T/TTT)_l TIT, Miz = IT — Xi (XQXZ')—I X;

Written in more compact form, we have

0;r = (WW,)" Wiy,

(S.11)

The “individual” forecasts in (S.10), for i = 1,2,..., N, will be used as the reference forecast

and the MSFE of all other methods are reported as ratios relative to the MSFE of this forecast,

defined by

N

_ A1 2

MSFE,¢; = N~* § (yi,T+1 - oi,Twi,T+1> .
i1

(S.12)

Pooled forecasts The forecasts that use the pooled information of all units in the panel are

- ~/
Uir+1 = 000 Wi T41,

where

N -1 N
épool = (W,W)il Wy = (Z W;WZ> Z W;yza
=1 =1

and W = (W1, W4, ..., W) and y = (¢}, v5, ..., yy)-

Fixed effects forecast The FE forecasts are given by
N N ~/
yl%%—l = Qi FE + BrE®i,T+1,

where

i=1

N -1 N
Brr = (Z XQMTXz) > XiMry,,
=1
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and
. N
O FE = T/T(yi - ﬁFEXi)/T

Goldberger’s random effects BLUP This forecast uses the best linear unbiased predictor (BLUP)

of Goldberger (1962). For this forecast, the model is assumed to be as follows:

/
Yigrl = ¢+ B'xip01 + €itt1,

where €;441 = 17 + u; t4+1. The BLUP forecasts are given as

A T2
~RE . ! n =
YiT+ = Grg + B TiT+1 T 5 5 i S.16
3, T+1 RE*%1% TU% O_?L ) ( )

where &; = T4 EZ;I it and &y = yit — GrE — ,,Brp- GRrE, and Bry are estimated by GLS

using

S =672 (M7 + pPr)

where PT:IT—MT, /3:5'u/(T6,27+(A75),

N
A 1 A 3 o) ¢
61 = NT-1)-K ;(yi —G;re — Xifrp) M1(y; — Gire — XiBrg)
. /
67 = N & ;(yi — Brr®i)” — 0,/T,
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A ol
and &gy = § — BrpX, where

T N
iﬁi:T_lszi,t, @:N_lzi% Qi:T_IZyit’ @ZN_IZ?Z*
t=1 i=1

t=1 i=1
See Baltagi (2013, pp. 999-1001) and Pesaran (2015, pp. 646-649) for further details.

Combination of individual and pooled forecasts
Yiry1 = Onr¥ir+1 + (1 — Onp)Jir+1,

where ;741 and @; 741 are the individual and pooled forecasts in (S.10) and (S.13) with

weights

ot Any — T Y nr
NT = =% = P
ANt + T hnr = 2T YNy

where Anr, ¥nr, and hyr are given by (40), (43) and (41).

Combination of individual and FE forecasts

Yi 7+1(@FE NT) = OFp NTUi 1 + (1 — OFp N7)¥iT+1,FE,
where ;741 and 9; 741 rg are the individual and FE forecasts in (S.10) and (S.15) with the

weight

AFE -1,7FE
A]\/vT A_ T 1¢NT _ )
ANT +T e — 2T

Ak
WFE,NT —

ARE9RE and ]tLNTﬂ are given by (A.26), (A.28), and (A.27).

Combination with individual weights

~C Ak Ak ~
Ui = @i Oir+1 + (1 —&))bire1,

where ;741 and g; 741 are the individual and pooled forecasts in (S.10) and (S.13) with
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weights

/ ~ .
w; o Wi T4

_122—1 A
wi 1 (17167 Qur + Qp)wiria

),0=N"13"N 6, and the estimator of 67 is given in

SY

where 0, = N"LS°N (8, — 0)(6; —
Pesaran et al. (2022).

Empirical Bayes forecast The empirical Bayes forecast using the estimator of Hsiao et al. (1999)

. ~EB . ~/ )
IS ;7 = OiyEB'wLTH, where

/

imp = (6, " WiW, + le)_l((&;ZW;yi + le 5)7

D>

N
= 1 5 9 aa
OZNE, O;7, 67=¢7%/(T-K),

=1
N 1 o =
2, =+ > (0ir —0)(6;r —0),

and € = Y, — W’iéz’,T with éi,T given in (Sll)

Hierarchical Bayesian forecast In this supplement, we additionally apply the hierarchical Bayesian

model of Lindley and Smith (1972) which assumes &3 ~ #4dN(0, o), using the following priors:

>
2

N(é, Yg),
é ~ N(da Sé))
2,' ~ Wishart(vs, (vnSs) ™),

0? ~ invGamma(v,/2,v,5%/2).

The Gibbs sampler uses the conditional posteriors (Gelfand et al., 1990) as set out below, where
|- denotes conditional on the other parameters in the Gibbs sampler, for r, = 1,2,..., Ry, where

Ry denotes the number of random draws used in the Gibbs sampler:

e 0, | ~ N(b;,Si), where b; = S; (o';b%lW;yi + zglrb—lérrl)a
1
and S; = (07,2 WiWi+ 35", )

rp—1
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o 02 | ~ invGamma ([NT +v,)/2, 5 | (y; = Wibi,) (i = Wibir,) + vo5? )

_ —1
b arb|' ~ N(h'7 Sh)7 where h = S}, (25,}“1)—1 sz\il 0i7Tb + Sejld> and S}, = (NEfl

977”1)_

L +571)

_ _ —1
e 35! |- ~ Wishart (N +us, [Zfi (85, — 0,,) (0ir, — 0,,) + yzsz} )

The Gibbs sampler draws iteratively from the conditional posterior distributions, starting with

the following initial values (r, = 0)
04 =€8/(NT - K), &= (E1,8s,....6n), &=y~ Wibir

(éi,T - 90)(9i,T —6y)".

WE

I 1
0y = Z 0;r, and 25}) = N
i=1 =1

Estimates from the Gibbs sampler are obtained from 1500 iterations with the first 500 discarded

as a burn-in sample. In each iteration, we calculate

~HB Y
Uita1r, = 0in, WiT+1, (S.17)

1 R, ~HB
Ry Zrbzl YiT+1,r,

for i =1,2,..., N and the forecast is then g)ﬁTBH =
We use the following hyperpriors: d = 0, vy = K, v, = 0.1, and s> = 0.1. For the prior
covariance matrices S; and Sy we provide the results for three settings: (1) Sz = Ix106,
Sy = Ik10, (2) S5 = Ix10%, Sy = Ix10% and (3) S5 = Ik, Sy, = I. These are proper,

weakly informative priors that avoid the use of uninformative priors that appear to be difficult

to attain in hierarchical models (Gelman, 2006).

Monte Carlo results for the hierarchical Bayesian model are given in Table S.2. Since the MCMC
approach to the hierarchical Bayesian model is computationally quite expensive, we restrict the
Monte Carlo experiments to 1000 iterations and report some of the remaining methods as a reference.
It can be seen from the table that the accuracy of the forecasts largely depends on the serendipitous
choice of the prior.

Results for the applications are reported in Table S.5. The results suggest that the choice of
prior for the error variance has relatively little influence, whereas the prior choices for the parameter

covariances can substantially alter the forecast accuracy.
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S.4 Additional Monte Carlo applications and empirical results

In Section 5, we restricted our analysis to the case of N = 100. The results for N = 1000 can be
found in Table S.3. The results from N = 100 clearly carry over and the influence of the number of
cross-section units is small.

As a practical alternative to the combination forecasts in Section 4, which are based on estimates
of the optimal combination weights, forecast combinations using equal weights have a long history in
the literature (Timmermann, 2006). We therefore considered how this forecast combination scheme
performs both in the Monte Carlo simulations and for the empirical applications. As in the paper, we
separately consider combination schemes for the individual-pooled forecasts and for the individual-
FE forecasts.

In Section S.4 of the Supplementary Appendix (Tables S.5-S.8) we also report a complete suite
of Monte Carlo simulation results based on an equal-weighted combination scheme for our two com-
bination schemes. The predictive accuracy of the equal-weighted combination scheme is comparable
to that of the combinations based on estimated weights in the presence of modest levels of parameter
heterogeneity. Conversely, equal-weighted combinations underperform forecast combinations with
estimated weights when the level of parameter heterogeneity is either very low or very high. In
either case, one approach (individual estimation or pooling) dominates the other by a sufficiently
large margin that equal-weighting becomes sub-optimal.

We also considered the performance of an (infeasible) oracle combination scheme that uses the
true parameter values to compute the optimal combination weights. Compared against our feasible
estimates of the combination weights, this oracle scheme shows the impact of parameter estimation
error on forecasting performance. We find that the cost of estimation error is only sizable if T is
small (7" = 20) and the parameters are homogeneous. For this case, the oracle scheme reduces
the MSFE of the pooled-individual combination by 0.051 (0.906 versus 0.856) and by 0.037 for the
FE-individual combination. Differences are much smaller (0.005 and 0.011) in the heterogeneous
case even when 1" = 20 and are further reduced for 7" = 100 where, in many cases, only the third
decimal of the MSFE ratio is affected.

Overall, we conclude from these Monte Carlo simulations that the optimal forecast combination

scheme introduced in our paper produces more accurate forecasts that are notably more robust to
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Table S.4: Monte Carlo results for equally weighted and Oracle forecasts

S-14

ag o2 eq.weight(pool) eq.weight(pool) Oracle(pool) Oracle(FE)
T 20 50 100 20 50 100 20 50 100 20 50 100
Conditional on k; =0
N =100, pyz =0
0.0 0.5 0.888 0.977 0.995  0.950 0.992 0.998  0.872 0.983 0.997  0.944 0.995 0.999
0.5 0.5 0.88 0.976 0.994  0.970 0.999 1.001  0.869 0.980 0.996  0.968 0.999 1.003
1.0 1.0  0.860 0.968 0.990 1.038 1.036 1.020  0.857 0.974 0.994  1.017 1.021 1.016
N =100, pyz = 0.5
0.0 0.5 0.887 0.976 0.995  0.950 0.992 0.998  0.870 0.982 0.997  0.944 0.995 0.999
0.5 0.5 0.88 0.975 0.993  0.970 0.999 1.001  0.870 0.980 0.996  0.968 0.999 1.003
1.0 1.0 0.860 0.968 0.990  1.041 1.038 1.022  0.853 0.973 0.994  1.020 1.022 1.017
N = 1000, pyz =0
0.0 0.5 0.88 0.976 0.994  0.947 0.991 0.998  0.870 0.983 0.997  0.938 0.993 0.999
0.5 0.5 0.881 0.974 0.992  0.963 0.997 1.000 0.861 0.979 0.996  0.961 0.998 1.003
1.0 1.0 0.877 0970 0.990 1.016 1.024 1.015 0.876 0.975 0.993  1.006 1.015 1.015
N =1000, pyz = 0.5
0.0 0.5 0.886 0.976 0.994  0.947 0.991 0.998  0.868 0.982 0.997  0.938 0.993 0.999
0.5 0.5 0.880 0.972 0.991  0.963 0.998 1.000  0.864 0.978 0.995  0.961 0.998 1.003
1.0 1.0 0.877 0970 0.989  1.017 1.024 1.015 0.895 0.978 0.993  1.006 1.015 1.015
Conditional on xk; = %1
N =100, pyz =0
0.0 0.5 0.744 0.935 0.989  0.826 0.948 0.980  0.712 0.934 0.982  0.758 0.929 0.973
0.5 0.5 0.773 0.974 1.032  0.885 0.997 1.026  0.771 0.966 0.994  0.881 0.987 1.008
1.0 1.0 0.806 1.042 1.113 1.037 1.120 1.129 0.861 0.991 1.002 0.997 1.045 1.049
N =100, py; = 0.5
0.0 0.5 0.745 0.939 0.994  0.826 0.948 0.980  0.719 0.939 0.984  0.758 0.929 0.973
0.5 0.5 0.778 0.981 1.040  0.888 1.000 1.028  0.782 0.972 0.996  0.884 0.989 1.009
1.0 1.0 0.810 1.048 1.119  1.043 1.125 1.131  0.847 0.989 1.002  1.003 1.048 1.051
N =1000, pyz =0
0.0 0.5 0.748 0.936 0.988  0.829 0.949 0.980  0.717 0.936 0.982  0.761 0.930 0.973
0.5 0.5 0.774 0978 1.036  0.884 1.003 1.033  0.777 0.969 0.995  0.883 0.990 1.011
1.0 1.0 0.831 1.059 1.123 1.042 1.133 1.146 0.914 1.126 1.163 0.997 1.045 1.052
N =1000, py; = 0.5
0.0 0.5 0.748 0.939 0.993  0.829 0.949 0980  0.723 0.939 0.984  0.761 0.930 0.973
0.5 0.5 0.771 0.976 1.035  0.881 0.998 1.028  0.785 0.995 1.024  0.879 0.988 1.009
1.0 1.0 0.823 1.049 1.113  1.032 1.121 1.132  0.918 1.105 1.136  0.993 1.041 1.047

Notes: The results are for equal weighted combinations of individual and pooled forecasts and for individual and FE forecasts,
and for combinations using oracle weights, which use the disturbances and parameteres for the construction of the weights.
For further details see the footnote of Table 1.



parameter heterogeneity than the equal-weighted combination schemes considered here.

Table S.5 shows the performance of the equal-weighted forecasts for the application to house price
inflation. For comparison, we also show the forecasting results for our optimal combination scheme.
In this application pooling beats individual forecasts, which suggests a low degree of parameter
heterogeneity. The equal-weighted forecast combinations perform correspondingly well. In fact, the
combination of individual and pooled forecasts has the lowest average MSFE, offers the most precise
forecasts for 10.2% (SAR model) and 14.9% (SARX) of MSAs and never produces the worst forecast.
This performance is marginally better than that of the optimal combination schemes with estimated
weights.

The results for the CPI application in Table S.5 show that in a similar fashion the equal-weighted
combination provides precise forecasts, which are more accurate, on average, than the optimal fore-
cast combination, though beaten by a small margin by the empirical Bayes forecasts.

Table S.6 shows the results from the panel and individual DM test statistics. For both applica-
tions, the panel DM test show significant improvements over the individual forecasts. For the house
price applications, somewhat fewer forecasts for MSAs are significantly better than the individual
forecast compared to what we find for the optimal combination scheme. For the CPI application,
in contrast, the pooled forecast with equal weights is significantly more precise than the benchmark

for slightly more series than under the optimal combination scheme.

S.5 Derivation of results for fixed effect estimation

Following the derivations for the pooled estimates, it is easily seen that
. 1 1 =
Bre — Bi = Mg+ QnrsdnTs + QN sENT S

where n; 5 = 8; — 8, Enr s = N SN T X Mre;,
N N
Qnrs=N"'Y T XMpX;, and gyrg=N"'> (T X{MrX;)m, .

i=1 =1

With one exception, the derivation of the average MSFE for the FE estimation closely parallels

the case of the pooled estimator with n; g in place of n,, Q ~NT,3 Teplacing Qnr, @ ~NT,3 replacing
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Table S.6: Diebold-Mariano test statistics for equal predictive accuracy: equal weights forecasts

hier.Bayes (1) hier.Bayes (2) hier.Bayes (3) eq.weights(pool) eq.weights(FE)

House Prices: all forecasts

Panel DM —29.58 —29.83 —28.00 —26.76 —25.20
DM < —1.96/DM > 1.96 202/1 207/1 186/1 158/0 148/1
CPI: all forecasts

Panel DM —13.15 —10.12 —17.78 —11.53 —10.76
DM < —1.96/DM > 1.96 112/8 90/3 94/8 79/14 79/9

Notes: The table reports the DM statistics for the three hierarchical Bayesian forecasts and the two equally weighted forecasts,
where the first combines individual and pooled forecasts and the second individual and FE forecasts. For further details see the
footnote of Table 3.
anT, £ NT,3 replacing &€ N7, and ;741 = X;741 — & in place of x; 1. The exception arises
due to the fact that in the case of weakly exogenous regressors, &7 (and hence &; 741) is not
distributed independently of (BFE — B;)'@; r+1. To account for this dependence, we first note that,

under Assumption 7, éNT’B =0, (N_l/z), and
N ) N . L .
N1 Z (IBFE z) Ziry18r = N1 Z <_7h',5 + Qnr ANt + QNT,,B&NT,,B) T r4+1€iT

=1 =

N
_ _ _ ~—1 _ _ _ _
= —-N7! an,ﬁwi,T—klgiT + Anr QN5 (N ! in,T+16iT> +0, (N 1/2> .

i—1

i=1

Also, under Assumptions 4 and 9 we have

N
Z (BFE 1> Zi & = Ny + Op(N 172, (S.18)

The expression for CFVET simplifies somewhat by noting that under Assumption 2, E (z;711&;7) = 0,

and using Lemma A.1 we have l_I/NTﬁQ]_\[lT,B = Q’M ﬁQ]_\[’lﬁ +0, (N -1/ 2). Note that under Assumption
6, m; 3 and ¢;; are independently distributed. Using these results, the MSFE under fixed effects

estimation in (27) follows.

A comparison of forecasts based on individual and fixed effects estimates

Since,

éir1 = G — T (B — B). (S.19)
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The derivation of the average MSFE, N~} Zl 1€ é; T 41 can now proceed as before, except that under
weak exogeneity the two components of é; 741, in (S.19), are no longer independently distributed

and, as in the FE estimation, we need to consider the additional term
N
Zi‘z 418 — Bi)&ir1 =N~ sz T (XiMr X)) XiMreiiri
= —N! Zm 7 (XM X ) X Mreigir + Oy (N7Y2).

Using this, we have

- Z T; 711(8; — Bi)éirs1 = entp + Op(N N2, (S.20)
where
N
enrg =N ZE [Ezg,T-i-l(X;MTXi)_ngMTEiE_iT] . (S.21)
i=1

Taking this term into account we obtain

N
- Z &rq=N"" Z B2 1+ hrg — 2entg + Op(N7Y/2), (S.22)
i=1
where
N
_ _ _ X! Mree; MTX
hNT,,B =N"1 ZE |:mi,T+1QiT1,,B ( ZT > Qng 1T+1:| ) (8.23)
i=1

and Q;p5 = T1 (X;M7X;). As with the term ch in the average MSFE of the FE forecasts,
cnt,g = 0 when @, is strictly exogenous. To see why this is so, note that in this case, E (e;&;7 | X;) =

(02/T)T and
E[Z, 0 (XM X:) ' X{Mreigir | Xi| = Z)p o (XiMp X)) ' X{MrE 67 | X, Ziri1] =0,

so unconditionally E Eg}TH(X;MTXi)*lX;MTsiéiT} =0, and ey g = 0.

Apart from the error term, ;741 — &, which is common to the individual and FE forecasts, the
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squared forecast errors are analogous to those in the comparison of individual and pooled forecasts

except that we work with demeaned data and allow for the additional terms c}FVE:} and cyt g if the

regressors are weakly exogenous.
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