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Abstract

We propose a near optimal test for structural breaks of unknown timing
when the purpose of the analysis is to obtain accurate forecasts under
square error loss. A bias-variance trade-off exists under square forecast
error loss, which implies that a structural break of small magnitude
should be ignored. We quantify this magnitude, assess the relevance of
the break location, and provide a test to determine whether modeling a
break improves forecast accuracy. Asymptotic critical values and near
optimality properties are established allowing for a break under the
null, where the critical break magnitude varies with the break location.
The results are extended to a class of shrinkage forecasts with our test
statistic as shrinkage constant. Empirical results on a large number
of macroeconomic time series show that structural breaks that are
relevant for forecasting occur much less frequently than indicated by
existing tests.
JEL codes: C12, C53
Keywords: structural break test, forecasting, squared error loss

∗University of Groningen, t.boot@rug.nl
†Erasmus University Rotterdam, Tinbergen Institute, De Nederlandsche Bank, and

CESifo Institute, andreas.pick@cantab.net.
We thank Graham Elliott, Bart Keijsers, Alex Koning, Robin Lumsdaine, Agnieszka
Markiewicz, Michael McCracken, Allan Timmermann, participants of seminars at CESifo
Institute, Tinbergen Institute, University of Nottingham, and conference participants at
ESEM, IAAE annual conference, NESG meeting, RMSE workshop, and SNDE conference
for helpful comments.

1



1 Introduction

Structural breaks present a major challenge to forecasters as they require
information about the time of the break and parameter estimates for the
post-break sample. Often, both can be estimated only imprecisely (Elliott
and Müller, 2007, 2014). Furthermore, forecasts are typically evaluated
using mean square error loss, which implies a bias-variance trade-off. This
suggests that ignoring rather than modeling small breaks leads to more
accurate forecasts (Pesaran and Timmermann, 2005). If sufficiently small
breaks can be ignored, the question is: what constitutes sufficiently small?

In this paper, we develop a test for equal forecast accuracy that compares
the expected mean square forecast error (MSFE) of the forecast from a post-
break sample to that from the full sample. The difference in MSFE depends
on a linear combination of the pre- and post-break parameters with weights
that are a function of the regressors in the forecast period. As a result,
breaks in the parameter vector, which are the focus of the extant literature
on structural breaks (such as Ploberger et al., 1989; Andrews, 1993; Andrews
and Ploberger, 1994; Elliott and Müller, 2007, 2014; Elliott et al., 2015), do
not necessarily imply a break in the forecast.

The full sample and the post-break sample forecasts achieve equal fore-
cast accuracy at a critical magnitude of the break. Below this magnitude,
the full sample forecast is preferred; above this magnitude, the forecast based
on the post-break sample is more accurate. When the break date is known,
the critical magnitude is one standard deviation of the forecast distribution.
In contrast, when the date of a local-to-zero break is unknown, the break
date cannot be estimated consistently. This increases the variance of the
post-break sample forecast, which, in turn, increases the critical magnitude
of the break to up to three standard deviations of the forecast distribution.

A complication is that, due to the bias-variance trade-off, equal forecast
accuracy will be achieved under a non-zero magnitude of the break. The
null of our test is therefore different from that of existing tests that use a
null of no instability. Additionally, the magnitude of the break under the
null depends on the unknown break date, which under local breaks is not
consistently estimable. However, using the work of Andrews (1993) and
Piterbarg (1996), we can show that our test is optimal as the size of the
test tends to zero. Additionally, we provide evidence that our test remains
close to the optimal test for conventional choices of the nominal size. The
reason is that critical magnitudes that follow from the MSFE loss function
are relatively large, which result in accurate estimates of the break date.
The near optimality does not depend on whether our Wald-statistic is used
in its homoskedastic form or whether a heteroskedastic version is used, as
long as the estimator of the variance is consistent.

The competing forecasts in our test are from the full sample and from
the post-break sample. Forecasts based on any test, including ours, will be
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based on pre-test estimators, which, in some areas of the parameter space,
can have high risk compared to shrinkage estimators. Pesaran et al. (2013)
show that forecasts based on post-break samples can be improved by using
all observations and weighting them such that the MSFE is minimized. We
show that this forecast can be written as a forecast from a shrinkage esti-
mator in the tradition of Thompson (1968), where the shrinkage estimator
averages between the full sample estimator and post-break sample estima-
tor with a weight that is equivalent to the test statistic introduced in this
paper. This approach is similar to the averaging of estimators proposed
by Hansen (2009), which minimized the in-sample mean square error using
weights based on the Mallows criterion.

Under a known break date, the performance of shrinkage estimators
is well known, see for example Magnus (2002). However, their properties
depend critically on the fact that the break date is known, which implies
that the estimator from the post-break sample is unbiased. Under a local
break, this may not be the case and the forecasting performance of the
shrinkage estimator compared to the full sample forecast is not immediately
clear. Since the shrinkage estimator does not take break date uncertainty
into account, it will likely put too much weight on the post-break sample
forecast. We find that for small break magnitudes, where the break date
is not accurately identified, the shrinkage forecast is less accurate than the
full sample forecast. However, compared to the post-break sample forecast,
we find that the shrinkage estimator is more accurate for a large area in
the parameter space. We therefore propose a second version of our test
that compares the forecast accuracy of the shrinkage estimator and the full
sample forecast.

More generally, we propose a testing framework that incorporates the
loss function, here the mean square forecast error, into the test. Similar
to the work of Trenkler and Toutenburg (1992) and Clark and McCracken
(2012), our test is inspired by the in-sample MSE test of Toro-Vizcarrondo
and Wallace (1968) and Wallace (1972). However, compared to the tests
of Trenkler and Toutenburg (1992) and Clark and McCracken (2012), our
testing framework is much simpler in that, under a known break date, our
test statistic has a known distribution that is free of nuisance parameters.

Our test shares some similarity with the work of Dette and Wied (2016),
who consider CUSUM tests in the spirit of Brown et al. (1975) but allow
for a constant parameter differences under the null. They do, however, not
consider local-to-zero breaks, which would eliminate break date uncertainty
in our asymptotic framework. Also, we show that the critical magnitude of
the break depends on the break date and is therefore not identical across
samples.

Forecast accuracy tests of the kind suggested by Diebold and Mariano
(1995) and Clark and McCracken (2001) (see Clark and McCracken (2013)
for a review) are substantially different from our test. These tests assess
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forecast accuracy ex post. In contrast, the test we propose in this paper
is an ex ante test of the accuracy of forecasts of models that do or do not
account for breaks.

Giacomini and Rossi (2009) assess forecast breakdowns by comparing the
in-sample fit and out-of-sample forecasts of a given model. The main focus
of their work is on assessing pseudo-out-of-sample forecasts. However, they
also consider forecasting the loss differential of in-sample and out-of-sample
forecast performance by modeling it with additional regressors. This con-
trasts with our approach, which targets the out-of-sample period directly in
the construction of the test statistic. Of interest for our work is that, while
a structural break is only one possible source of forecast breakdowns, Gia-
comini and Rossi find that it is a major contributor to forecast breakdowns
in predicting US inflation using the Phillips curve.

Substantial evidence for structural breaks has also been found in macroe-
conomic and financial time series by, for example, Stock and Watson (1996),
Rapach and Wohar (2006), Rossi (2006), and Paye and Timmermann (2006).
We apply our test to macroeconomic and financial time series in the FRED-
MD data set of McCracken and Ng (2016). We find that breaks that are
important for forecasting under MSFE loss are between a factor two to three
less frequent than the sup-Wald test by Andrews (1993) would indicate. In-
corporating only the breaks suggested by our test substantially reduces the
average MSFE in this data set compared to the forecasts that take all breaks
suggested by Andrews’ sup-Wald test into account. Our paper, therefore,
provides theoretical support for the finding of Stock and Watson (1996) that
breaks do not appear to have a substantial effect on forecast accuracy even
though they are a prominent feature of macroeconomic data.

The paper is structured as follows. In Section 2, we start with a mo-
tivating example using the linear regression model with a break of known
timing. The model is generalized in Section 3 using the framework of An-
drews (1993). In Section 4, we derive the test, show its near optimality, and
extend the test to cover the optimal weights or shrinkage forecast. Simula-
tion results in Section 5 shows that the near optimality of the test is in fact
quite strong, with power very close to the optimal, but infeasible, test con-
ditional on the true break date. Finally, the application of our tests to the
large set of time series in the FRED-MD data set is presented in Section 6.

2 Motivating example: a structural break of known
timing in a linear model

In order to gain intuition, initially consider a linear regression model with a
structural break at time Tb

yt = x′tβt + εt, εt ∼ iid(0, σ2) (1)
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where

βt =

{
β1 if t ≤ Tb
β2 if t > Tb

xt is a k× 1 vector of exogenous regressors, βi a k× 1 vector of parameters,
and the break date, Tb, is initially assumed to be known. The parameter
vectors β1 and β2 can be estimated by OLS on the two subsamples. If the
break is ignored, a single vector of parameter estimates, β̂F , can be obtained
using OLS on the full sample.

Denote V i = (Ti − Ti−1)Var(β̂i), for i = 1, 2, T0 = 0, T1 = Tb, T2 = T
and V F = TVar(β̂F ) as the covariance matrices of the vectors of coefficient
estimates. Initially, assume these matrices to be known; later they will be
replaced by their probability limits.

In this paper, we would like to test whether the expected mean squared
forecast error (MSFE) from the h-step ahead forecast using the full sample,
ŷFT+h = x′T+hβ̂F , is smaller or equal to that of the post-break sample, ŷPT+h =

x′T+hβ̂2. In this motivating example, we consider h = 1, and extend the
results towards the more general case in Section 4.

The MSFE for the forecast from the post-break sample estimate, β̂2, is

MSFE(x′T+1β̂2) = E

[(
x′T+1β̂2 − x′T+1β2 − εT+1

)2
]

=
1

T − Tb
xT+1V 2xT+1 + σ2

(2)

and that using the full sample estimate, β̂F , is

MSFE(x′T+1β̂F ) = E

[(
x′T+1β̂F − x′T+1β2 − εT+1

)2
]

= E
[(
x′T+1β̂F − x′T+1β2

)]2
+

1

T
x′T+1V FxT+1 + σ2

=

[
Tb
T
x′T+1V FV

−1
1 (β1 − β2)

]2

+
1

T
x′T+1V FxT+1 + σ2

(3)

Comparing (2) and (3), we see that the full sample forecast is at least as
accurate as the post-break sample forecast if

ζ = Tτ2
b

[
x′T+1V FV

−1
1 (β1 − β2)

]2
x′T+1

(
V 2

1−τb − V F

)
xT+1

p→ Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1

(4)

5



where τb = Tb/T and the second line assumes that the covariance matrices
asymptotically satisfy plimT→∞ V i = V for i = 1, 2, F .

To test H0 : ζ = 1 note that

ζ̂(τb) = Tτ2
b

[
x′T+1V FV

−1
1 (β̂1 − β̂2)

]2

x′T+1

(
V 2
1−τ − V F

)
xT+1

=

[
x′T+1(β̂F − β̂2)

]2

x′T+1Var(β̂F − β̂2)xT+1

d→ χ2(1, ζ)

(5)

Furthermore, given that we are interested in the null of ζ = 1, the test
statistic has a χ2(1, 1)-distribution under the null, which is free of nuisance
parameters.

A more conventional and asymptotically equivalent form of the test
statistic is

ζ̂(τb) = T

[
x′T+1(β̂1 − β̂2)

]2

x′T+1

(
V 1
τb

+ V 2
1−τb

)
xT+1

d→ χ2(1, ζ) (6)

This is a standard Wald test using the regressors at t = T + 1 as weights.
The results of the test will, in general, differ from the outcomes of the

classical Wald test on the difference between the parameter vectors β1 and
β2 for two reasons. The first is that the multiplication by xT+1 can render
large breaks irrelevant. Alternatively, it can increase the importance of small
breaks in the coefficient vector for forecasting. The second reason is that
under H0 : ζ = 1, we compare the test statistic against the critical values of
the non-central χ2-distribution, instead of the central χ2-distribution. The
critical values of these distributions differ substantially: the α = 0.05 critical
value of the χ2(1) is 3.84 and that of the χ2(1, 1) is 7.00.

As is clear from (4), if the difference in the parameters, β1−β2, converges
to zero at a rate T−1/2+ε for some ε > 0, then the test statistic diverges to
infinity as T → ∞, which is unlikely to reflect the uncertainty surrounding
the break date in empirical applications. In the remainder of the paper, we
will therefore consider breaks that are local in nature, i.e. β2 = β1 + 1√

T
η,

rendering a finite test statistic in the asymptotic limit. Local breaks have
been intensively studied in the recent literature, see for example Elliott and
Müller (2007, 2014) and Elliott et al. (2015). An implication of local breaks
is that no consistent estimator for the break date is available. A consequence
is that post-break parameters cannot be consistently estimated. This will
deteriorate the accuracy of the post-break window forecast compared the
full sample forecast, which, in turn, increases the break magnitude that
yields equal forecasting performance between full and post-break sample
estimation windows.

6



3 Model and estimation

We consider a possibly non-linear, parametric model, where parameters are
estimated using the generalized method of moments. The general estima-
tion framework is that of Andrews (1993). The observed data are given
by a triangular array of random variables {W t = (Y t,Xt) : 1 ≤ t ≤ T},
Y t = (y1, y2, . . . yt), and Xt = (x1,x2, . . . ,xt)

′. Assumptions can be made
with regard to the dependence structure of W t such that the results below
apply to a range of time series models. We make the following additional
assumption on the noise and the relation between yt, lagged values of yt and
exogenous regressors xt.

Assumption 1 The model for the dependent variable yt consists of a signal
and additive noise

yt = ft(βt, δ;Xt,Y t−1) + εt (7)

where the function ft is fixed and differentiable with respect to the parameter
vector θt = (β′t, δ

′)′.

In (7), while the parameter vector δ is constant for all t, the parame-
ter vector βt could be subject to a structural break. When ignoring the
break, parameters are estimated by minimizing the sample analogue of the
population moment conditions

1

T

T∑
t=1

E[m(W t,β, δ)] = 0

which requires solving

1

T

T∑
t=1

m(W t, β̂F , δ̂)′γ̂
1

T

T∑
t=1

m(W t, β̂F , δ̂) =

inf
β̃,δ̃

1

T

T∑
t=1

m(W t, β̃, δ̃)′γ̂
1

T

T∑
t=1

m(W t, β̃, δ̃)

(8)

where β̂F is estimator based on the full estimation window. Throughout we
set the weighting matrix γ = S−1 and

S = lim
T→∞

Var

(
1√
T

T∑
t=1

m(W t,β, δ)

)

for which a consistent estimator is assumed to be available.
As discussed above, we consider a null hypothesis that allows for local

breaks,

βt = β1 +
1√
T
η(τ)
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where η(τ) = b I[τ < τb], I(A) is the indicator function, which is unity
if A is true and zero otherwise, b is a vector of constants, and τ = t/T .
The partial sample parameter vectors β1 and β2 satisfy the partial sample
moment conditions

1

τT

τT∑
t=1

m(W t,β1, δ) = 0, and
1

(1− τ)T

T∑
t=Tτ+1

m(W t,β2, δ) = 0

Define

m̄(β1,β2, δ, τ) =
1

τT

τT∑
t=1

(
m(W t,β1, δ)

0

)
+

1

(1− τ)T

T∑
t=Tτ+1

(
0

m(W t,β2, δ)

)
Then, the partial sum GMM estimators can be obtained by solving (8) with
m(·) replaced by m̄(·) and γ̂ replaced by

γ̂(τ) =

(
1
τ Ŝ
−1

0

0 1
1−τ Ŝ

−1

)
The aim is to determine whether the full sample estimator lead to a more

precise h-step-ahead forecast in the mean square forecast error sense than
the post-break sample estimator. The forecasts are constructed as

ŷFT+h = fT+h(β̂F , δ̂; IT )

ŷPT+h = fT+h(β̂2, δ̂; IT )
(9)

where IT is the information set at time T and it should be noted that it
includes the exogenous and lagged dependent variables that are needed to
construct the forecast. If h > 1, the forecasts can be iterated or direct fore-
casts and the function fT+h will depend on which type of forecast is chosen.
In our analysis, the function fT+h can be a non-linear function of the pa-
rameters, which allows for iterated forecasts, and we therefore do not add
notation to distinguish the types of forecasts. A direct forecast, in contrast,
leads to residual autocorrelation, which is allowed in our analytical frame-
work. The comparison between ŷFT+h and ŷPT+h is, however, non-standard
as, under a local break, even the parameter estimates of the model that
incorporates the break may not be unbiased.

In order to compare the forecasts in (9), we start by providing the asymp-
totic properties of the estimators in a model that incorporates the break and
in a model that ignores the break. The asymptotic distributions derived by
Andrews (1993) depend on the following matrices, for which consistent es-
timators are assumed to be available,

M = lim
T→∞

1

T

T∑
t=1

E

[
∂m(W t,β, δ)

∂β

]
, M δ = lim

T→∞

1

T

T∑
t=1

E

[
∂m(W t,β, δ)

∂δ

]
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To simplify the notation, define

X̄
′
= M ′S−1/2

Z̄
′
= M ′

δS
−1/2

Partial sample estimator The partial sample estimators converge to the
following Gaussian process indexed by τ

√
T

 β̂1(τ)− β2

β̂2(τ)− β2

δ̂ − δ

⇒
 τX̄

′
X̄ 0 τX̄

′
Z̄

0 (1− τ)X̄
′
X̄ (1− τ)X̄

′
Z̄

τZ̄
′
X̄ (1− τ)Z̄

′
X̄ Z̄

′
Z̄

−1

×

 X̄
′
B(τ) + X̄

′
X̄
∫ τ

0 η(s)ds

X̄
′
[B(1)−B(τ)] + X̄

′
X̄
∫ 1
τ η(s)ds

Z̄
′
B(1) + Z̄

′
X̄
∫ 1

0 η(s)ds


(10)

whereB(τ) is a Brownian motion defined on the interval [0, 1] and⇒ denotes
weak convergence. In line with Andrews (1993), we subtract β2 from both
estimators β̂1 and β̂2. This lines up with our interest in forecasting future
observations, which are functions of β2 only, and the remainder that arises
if τ 6= τb, is absorbed in the integral on the right hand side.

Define the projection matrix P X̄ = X̄(X̄
′
X̄)−1X̄

′
, its orthogonal com-

plement as M X̄ = I − P X̄ and

V = (X̄
′
X̄)−1

H = Z̄
′
M X̄Z̄

L = (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1

H̃ = LHL′

(11)

The inverse in (10) yields the asymptotic variance covariance matrix of(
β̂1(τ)′, β̂2(τ)′, δ̂

′)′
ΣP =

 1
τV + H̃ H̃ −L

H̃ 1
1−τV + H̃ −L

−L′ −L′ H−1


Hence,

√
T (β̂1(τ)− β2)⇒ 1

τ

[
(X̄
′
X̄)−1X̄

′
B(τ) +

∫ τ

0
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T (β̂2(τ)− β2)⇒ 1

1− τ

[
(X̄
′
X̄)−1X̄

′
(B(1)−B(τ)) +

∫ 1

τ
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T (δ̂ − δ)⇒ (Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

(12)
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where the convergence occurs jointly. Several terms can be recognized to be
analogous to what would be obtained in a multivariate regression problem
using the Frisch-Waugh-Lovell theorem.

Full sample estimator For estimators that ignore the break, we have

√
T

(
β̂F − β2

δ̂ − δ

)
⇒
[
X̄
′
X̄ X̄

′
Z̄

Z̄
′
X̄ Z̄

′
X̄

]−1
[
X̄
′
B(1) + X̄

′
X̄
∫ 1

0 η(s)ds

Z̄
′
B(1) + Z̄

′
X̄
∫ 1

0 η(s)ds

]
(13)

Using the notation defined in (11), the inverse in (13) can be written as

ΣF =

(
V + H̃ −L
−L′ H−1

)
and, therefore,

√
T
(
β̂F − β2

)
⇒ (X̄

′
X̄)−1X̄

′
B(1) +

∫ 1

0
η(s)ds

− (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T
(
δ̂ − δ

)
⇒ (Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

(14)

Note that for the parameters δ̂, the expression is identical to partial sample
estimator.

Later results require the asymptotic covariance between the estimators
from the full sample and the break model, which is

plim
T→∞

T Cov(β̂2(τ), β̂F ) = V + H̃ = plim
T→∞

T Var(β̂F )

which corresponds to the results by Hausman (1978) that under the null of no
misspecification, a consistent and asymptotically efficient estimator should
have zero covariance with its difference from an consistent but asymptot-
ically inefficient estimator, i.e. plimT→∞ TCov(β̂F , β̂F − β̂2(τ)) = 0. A
difference to the case considered here is that, under a local structural break,
β̂F and β̂2(τ) may both be inconsistent.

4 Testing for a structural break

In this section, we apply the estimation framework in the previous section
to generalize the motivating example discussed in Section 2. We briefly
consider the case of a known break date and then proceed to the case of an
unknown break date. A complication in the testing procedure arises when
mapping the null hypothesis of equal predictive accuracy to one based on
the break magnitude because the latter varies with the unknown break date.
Nevertheless, a test which has correct size and near optimal power can be
established.
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4.1 A local break of known timing

Conditional on the information set IT , which contains the regressor set
necessary to construct the forecast, the h-step-ahead forecast is

ŷT+h = fT+h(β̂2, δ̂|IT )

Denote the derivative of fT+h with respect to a parameter vector θ as f θ,
where we drop the time subscript of the derivative for notational conve-
nience. Equal predictive accuracy is obtained when the break magnitude
satisfies

ζ = T (1− τb)τb

[
f ′β2(β1 − β2)

]2
f ′β2V fβ2

= 1 (15)

Details of the derivation can be found in Appendix A.1. As in the motivating
example of Section 2, the null hypothesis of equal mean squared forecast
error maps into a hypothesis on the standardized break magnitude, ζ.

A test for H0 : ζ = 1 can be derived by noting that, asymptotically,
TVar(β̂1 − β̂2)

p→ 1
τb(1−τb)V and, therefore,

ζ̂ = T (1− τb)τb

[
f ′β2(β̂1 − β̂2)

]2

ω̂

d→ χ2(1, ζ) (16)

where ω̂ is any consistent estimator of f ′β2V fβ2 . The test statistic, ζ̂, can
be compared against the critical values of the χ2(1, 1) distribution to test
for equal forecast performance.

4.2 A local break of unknown timing

The preceding section motivates the use of the Wald-type test statistic (16)
to test for equal predictive accuracy between a full-sample and post-break
forecast. In this section, we adjust the test statistic for the fact that the
break date is unknown, provide its asymptotic distribution based on the
results of Section 3 and, subsequently, show that this can be used to test
the null of equal predictive accuracy.

When the break date is unknown, we consider the following test statistic

sup
τ∈I

ζ̂(τ) = sup
τ∈I

T (1− τ)τ

[
f ′β2(β̂1(τ)− β̂2(τ))

]2

ω̂

 (17)

with I = [τmin, τmax]. Since the function f ′β2 in (17) is fixed, the results
in Andrews (1993) and the continuous mapping theorem show that, under
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local alternatives and as T →∞, ζ̂(τ) in (17) weakly converges to

Q∗(τ) =

[
B(τ)− τB(1)√

τ(1− τ)
+

√
1− τ
τ

∫ τ

0
η(s)ds−

√
τ

1− τ

∫ 1

τ
η(s)ds

]2

= [Z(τ) + µ(τ ; θτb)]
2 (18)

where Z(τ) = B(τ)−τB(1)√
τ(1−τ)

is a self-normalized Brownian bridge with expec-

tation zero and variance equal to one, and

µ(τ ; θτb) = θτb

[√
1− τ
τ

τbI(τb < τ) +

√
τ

1− τ
(1− τb)I(τb ≥ τ)

]
(19)

arises when a structural break is present. For a fixed break date, Q∗(τ)
follows a non-central χ2-distribution with one degree of freedom and non-
centrality parameter µ(τ ; θτb)

2.
Throughout, we use the following estimate of the break date

τ̂ = arg sup
τ∈I

ζ̂(τ)
d→ arg sup

τ∈I
Q∗(τ) (20)

4.2.1 MSFE under an unknown break date

The difference between the expected asymptotic MSFE of the partial sample
forecast and that of the full sample forecast, standardized by the variance
of the post-break forecast based on the true break date, is denoted by

∆(τb) = lim
T→∞

{
MSFE(β̂2(τ̂), δ̂)−MSFE(β̂F , δ̂)

}
/f ′β2V fβ2

where MSFE(θ̂) is the asymptotic MSFE under parameter estimates θ̂.

Lemma 1 If the break date is estimated using (20) then difference in the
standardized mean squared forecast error, ∆(τ), is

∆(τb) = lim
T→∞

T

(
E

{[
fT+h(β̂2(τ̂), δ̂|IT )− fT+h(β2, δ|IT )

]2
}

−E

{[
fT+h(β̂F , δ̂|IT )− fT+h(β2, δ)|IT )

]2
})

/f ′β2V fβ2 (21)

= lim
T→∞

T

(
E

{[
f ′β2(β̂2(τ̂)− β2)

]2
}
− E

{[
f ′β2(β̂F − β2)

]2
})

/f ′β2V fβ2

The proof is provided in Appendix A.2. Lemma 1 shows that the difference
in the MSFE is not affected by the estimation of the parameter vector δ,
which is constant over the sample. Note that if instead of estimating the
break date, one considers a fixed value τ , then Lemma 1 holds with τ̂ re-
placed by the fixed value τ . The difference in the standardized mean squared
forecast error is then a function of both τb and τ .

12



Using (12) and (14) we rewrite (21) as

∆(τb) = E


 1

1− τ̂
f ′β2V X̄

′
(B(1)−B(τ̂))√
f ′β2V fβ2

+
1

1− τ̂

∫ 1

τ̂

f ′β2η(s)√
f ′β2V fβ2

ds

2
−

∫ 1

0

f ′β2η(s)√
f ′β2V fβ2

ds

2

− 1 (22)

This does not require assumptions with regard to the form of the instability,
which is governed by η(τ). Define J(τ) =

∫ 1
τ (f ′β2V fβ2)−1/2f ′β2η(s)ds and

note that, for fixed f ′β2 , (f ′β2V fβ2)−1/2f ′β2V X̄
′
[B(1)−B(τ̂)] = B(1) −

B(τ̂), where B(·) is a one-dimensional Brownian motion. Then

∆(τb) = E

{[
1

1− τ̂
(B(1)−B(τ̂)) +

1

1− τ̂
J(τ̂)

]2
}
− J(1)2 − 1

which could be used to test whether the use of a partial sample will im-
prove forecast accuracy compared to the full sample under various forms of
parameter instability. The expectation can be evaluated analytically if the
size of the partial sample is exogenously set to some fraction of the total
number of observations.

Under a structural break, η(τ) = bI[τ < τb], where b =
√
T (β2 − β1),

and (22) becomes

∆(τb) = E

{[
1

1− τ̂
(B(1)−B(τ̂)) + θτb

τb − τ̂
1− τ̂

I[τ̂ < τb]

]2
}
−θ2

τb
τ2
b −1 (23)

where θτb =
f ′β2

b√
f ′β2

V fβ2

=
√
ζ/(τb(1− τb)).

If the break date is estimated without error, then τ̂ = τb and the critical
break magnitude of the previous section is obtained. If τb is estimated, then
the expectation in (23) has to be taken with respect to both the stochastic
process B(·) and the distribution of the estimate τ̂ .

The distribution of τ̂ is not analytically tractable and we evaluate (23)
for different values of τb and θτb via simulation. Since ∆(τb) > 0 for θτb = 0,
and ∆(τb) < 0 when |θτb | → ∞, there is a value of |θτb |—and thus for
ζτb—for which ∆(τb) = 0 for each τb. We find numerically that ∆(τb) is a
monotonically decreasing function of θτb , and that hence, the value of θτb for
which ∆(τb) = 0 is unique. We report these results in Appendix A.8. This
supports the use of (17) to test ∆(τb) = 0.

The break magnitude θτb that yields ∆(τb) = 0 depends on the unknown
break date, τb. This implies that critical values u = u(τb) will differ across
different values of the unknown break date. However, as we will show, our
testing framework remains valid when the critical value u(τb) is replaced
with u(τ̂).

13



4.2.2 Testing under unknown break date

Note that, while the structural break case is our main focus, the results in
this section hold for a general form of structural change as long we assume
that the change point is identified.

Assumption 2 The function µ(τ ; θτb) has a unique extremum at τ = τb.

For the structural break model it is easy to verify that Assumption 2 holds.

The extremum value of (19) is given by µ(τb; θτb) = θτb
√
τb(1− τb) = ζ

1/2
τb .

Under Assumption 2, and for a small nominal size, we show below that
rejections are found only for break locations that are close to τb. The fol-
lowing theorem shows that the estimated location of the break is close to
the true break date.

Theorem 1 (Location concentration) Suppose Q∗(τ) = [Z(τ) + µ(τ ; θτb)]
2

where Z(τ) is a zero mean Gaussian process with variance equal to one and
|µ(τ ; θτb)| satisfies Assumption 2, then as u→∞

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P [Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1] [1 + o(1)]

where I = [τmin, τmax], I1 = [τb − δ(u), τb + δ(u)] and δ(u) = u−1 log2 u.

The proof is presented in Appendix A.3. The location concentration is
necessary to show that the proposed test controls size and has near optimal
power. Close inspection of the proof of Theorem 1 reveals that for the break
magnitudes we find when solving (23) the concentration is expected to hold
for conventional choices of the level of the test. This is indeed confirmed by
the simulation results in Section 5.

For each break date τb and corresponding break magnitude θτb for which
(23) equals zero, we can obtain a critical value u(τb) such that P (supτ∈I Q

∗(τ) >
u(τb)

2) = α. This yields a sequence of critical values u(τb) that depend on
the unknown break date τb.

Assumption 3 (Slowly varying critical values) Suppose that u(τb) is
a differentiable function with respect to τb, then the critical values are slowly
varying with τb in comparison to the derivative of the function µ(τ ; θτb) with
respect to τ on the interval I1, i.e.∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ < ∣∣∣∣∂µ(τ ; θτb)

∂τ

∣∣∣∣ <∞
In the structural break model, the derivative γ =

∂µ(τ ;θτb)
∂τ = θτb [τb(1 −

τb)]
−1/2. The assumptions that critical values vary slowly relates the depen-

dence of the critical values on τb to the identification strength of the break
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date as the derivative of µ(τ ; θτb) with respect to τ scales linearly with the
break magnitude. It was shown in Section 2 that θτb

√
τb(1− τb) ≥ 1, where

the equality holds if the break date is known with certainty. Therefore,

γ =
θτb√

τb(1− τb)
≥ 1

τb(1− τb)

A sufficient condition for the slowly varying assumption is therefore∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ ≤ 1

τb(1− τb)
(24)

This inequality can be verified once critical values are obtained. In Ap-
pendix A.7 we show that the inequality holds for the case of the structural
break model.

Under the assumption above, the following theorem guarantees that the
size of the test is controlled at the desired level once the critical value u(τb)
is replaced by the critical value u(τ̂).

Theorem 2 (Size) Suppose u(τb) is a sequence of critical values such that,
for a break of magnitude θτb at time τb, we have that

P

(
sup
τ∈I

Q∗(τ) > u(τb)
2

)
= α (25)

Then as u(τb)→∞

P

(
sup
τ∈I

Q∗(τ) > u(τ̂)2

)
= α (26)

where τ̂ is given in (20).

The proof is in Appendix A.4. Using critical values u(τ̂), we can also
establish that the test is near optimal in the sense that the power converges
to the power of a test conditional on τb. Suppose the critical values for the
latter test are given by v(τb) such that PH0

(
Q∗(τb) > v(τb)

2
)

= α, then we
can establish the following theorem.

Theorem 3 (Near optimal power) Suppose Assumption 3 holds, then

PHa

[
sup
τ
Q∗(τ) > u(τ̂)2

]
− PHa

[
Q∗(τb) > v(τb)

2
]

≥ PHa
[
Q∗(τb) > u(τb)

2
]
− PHa

[
Q∗(τb) > v(τb)

2
]

= 0

(27)

where τ̂ = arg supτ Q
∗(τ) and PHa denotes the crossing probability under

the alternative.
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Appendix A.5 contains the proof.
A test based on the Wald statistic (17) uses critical values that depend

on the estimated break date. The following corollary provides a test statistic
with critical values that are independent of the break date in the limit where
u→∞.

Corollary 1 A test statistic with critical values that are independent of τb
for u→∞ is given by

S(τ̂) = sup
τ∈I

√
T

∣∣∣f ′β2 (β̂2(τ)− β̂1(τ)
)∣∣∣√

f ′β2

(
V̂ 1
τ + V̂ 2

1−τ

)
fβ2

− |µ(τ̂ ; θτ̂ )| (28)

where τ̂ maximizes the first term of S or, equivalently, the Wald statis-
tic (17).

The proof is presented in Appendix A.6.
Finally, following from the location concentration established in Theo-

rem 1, in the limit where α→ 0, inference following a rejection is standard.

Corollary 2 (Corollary 8.1 of Piterbarg (1996)) As u → ∞, the dis-
tribution of the break location denoted by D converges converges to a delta
function located at τ = τb for excesses over the boundary u2, i.e.

D

(
τ̂ : Q∗(τ̂) = sup

τ∈I
Q∗(τ)

∣∣∣∣sup
τ∈I

Q∗(τ) > u2

)
d→ δτb as u→∞

4.2.3 Testing procedure

To summarize, we use the following steps to make the test for ∆(τb) = 0 in
(23) operational

1. Using (20), evaluate (23) using simulation to find, for each τb, the
break magnitude θτb that yields ∆(τb) = 0.

2. For each τb and corresponding θτb obtain a critical value u(τb) such
that P (supτ∈I Q

∗(τb) > u(τb)
2) = α.

3. Now the test statistic supτ∈I Q
∗(τ) or its finite sample analogue can

be compared to the critical value u(τ̂)2 with τ̂ from (20).

• This test controls size P (supτ∈I Q
∗(τ) > u(τ̂)2) = α when α is

sufficiently small per Theorem 2.

• The power of this test approaches that of the infeasible test
P (Q∗(τb) > v(τb)

2) per Theorem 3.

The above procedure can also be performed to make the test statistic (28)
operational, which leads to critical values that independent of the unknown
break date for sufficiently small magnitude. We will present critical values
in Section 5.
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4.3 Optimal weights or shrinkage forecasts

Pesaran et al. (2013) derive optimal weights for observations in an estimation
sample such that, in the presence of a structural break, the MSFE of the
one-step-ahead forecast is minimized. Conditional on the break date, the
optimal weights take one value for observations in the pre-break regime and
one value for observations in the post-break regime. This implies that we
can write the optimally weighted forecast as a convex combination of the
forecasts from pre-break observations and post-break observations

ŷST+h(τ) = ωfT+h(β̂1) + (1− ω)fT+h(β̂2)

where the optimal forecast is denoted with subscript S as we will show now
that it is equal to a shrinkage forecast that shrinks the post-break sample
based forecast in the direction of the full sample based forecast. For ease of
exposition, we assume here that all parameters break.

The asymptotic, expected mean square forecast error minus the variance
of the forecast period’s error is

lim
T→∞

E
[
T
(
ŷST+h − fT+h(β2)

)2]
=

= lim
T→∞

E

[
T
(
ωf ′β2(β̂1 − β̂2) + f ′β2(β̂2 − β2)

)2
]

+ o(1)

= ω2T
[
f ′β2 (β1 − β2)

]2
+ ω2f ′β2

(
1

τb
+

1

1− τb

)
V fβ2

− 2ω
1

1− τb
f ′β2V fβ2 +

1

τb
f ′β2V fβ2 + o(1)

(29)

where fβ2
=

∂fT+h(β2)
∂β2

and the first equality relies on a Taylor expansion
and the local-to-zero nature of the breaks. See Appendix A.9 for details.

Maximizing (29) with respect to ω and ignoring the lower order term,
yields

ω∗ = τb

1 + T

[
f ′β2(β1 − β2)

]2
f ′β2

(
1
τb

+ 1
1−τb

)
V f ′β2

−1

(30)

where the denominator contains the Wald statistic, ζ(τb), derived above.
Alternatively, we can combine the full sample forecast and the post-break

sample forecast. Since, β̂F = τbβ̂1 + (1− τb)β̂2 + op(T
−1/2),

ŷST+h = ωfT+h(β̂1) + (1− ω)fT+h(β̂2) + op(T
−1/2)

=
ω

τb
fT+h(β̂F ) +

(
1− ω

τb

)
fT+h(β̂2) + op(T

−1/2)

and after applying a Taylor expansion of the forecast function fT+h, the
optimal weight on the full sample forecast is given by

ω∗F =
ω∗

τb
=

1

1 + ζ(τb)
(31)
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The shrinkage estimator is therefore a convex combination of the full sample
and post-break sample forecast with weights that are determined by our
Wald test statistic.

The empirical results in Pesaran et al. (2013) suggest that uncertainty
around the break date substantially deteriorates the accuracy of the opti-
mal weights forecast. As a consequence, Pesaran et al. (2013) derive robust
optimal weights by integrating over the break dates, which yield substan-
tially more accurate forecasts in their application. Given the impact that
break date uncertainty has on choosing between the post-break and the full
sample forecasts, it is not surprising that the same uncertainty should af-
fect the weights. If this uncertainty is not taken into account, the weight
on the post-break forecast will be too high. It will therefore be useful to
test whether the break date uncertainty is small enough to justify using the
shrinkage forecast.

As the Wald statistic in (31) is conditional on the true break date, con-
sider the shrinkage forecast for a general value of τ

ŷST+h(τ) =
1

1 + ζ(τ)
fT+h(β̂F ) +

ζ(τ)

1 + ζ(τ)
fT+h(β̂2(τ))

⇒ 1

1 +Q∗(τ)
fT+h(β̂F ) +

Q∗(τ)

1 +Q∗(τ)
fT+h(β̂2(τ))

(32)

where the last line holds by the continuous mapping theorem. The asymp-
totic expressions for β̂2 and β̂F are provided in (12) and (14). The difference
in MSFE between the shrinkage forecast and the full sample forecast, after
applying again a Taylor expansion on the forecast function fT+h, is given
by

∆s = TE

[(
1

1 +Q∗(τ̂)
f ′β2(β̂F − β2) +

Q∗(τ̂)

1 +Q∗(τ̂)
f ′β2(β̂2(τ̂)− β2)

)2
]

−TE

[(
f ′β2(β̂F − β2)

)2
]

+ o(1) (33)

where we solve for ∆s = 0 numerically to obtain the break magnitude that
corresponds to equal predictive accuracy. Numerical results in Appendix A.8
show that equal predictive accuracy is associated with a unique break mag-
nitude for each τb. The testing procedure outlined in Section 4.2.3 can be
directly applied to find the appropriate critical values.

5 Simulations

5.1 Asymptotic analysis for standard size

The theoretical results of the previous section are derived under the as-
sumption that the nominal size tends to zero. In this section, we investigate
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the properties of our tests using simulations under conventional choices for
nominal size, α = {0.10, 0.05, 0.01}, while maintaining the assumption that
T → ∞. We will study for which break magnitude the MSFE from the
post-break forecast equals that of the full sample forecast. Conditional on
this break magnitude, we use simulation to obtain critical values. Finally,
we study the size and power properties of the resulting tests.

5.1.1 Implementation

We simulate (18) with (19) for different combinations of the break date and
break magnitude {τb, θτb}. Here, we focus on τb = {τmin, τmin +δτ , . . . , τmax}
where τmin = 0.15, τmax = 1 − τmin and δτ = 0.01. Additionally, we used
τmin = 1 − τmax = 0.05 and those results are reported in Appendix B. For
the break magnitude, θτb , we consider θτb = {0, 0.5, . . . , 20}. The Brownian
motion is approximated by dividing the [0, 1] interval in n = 1000 equally
spaced parts, generating εi ∼ N(0, 1) and B(τ) = 1√

n

∑nτ
i=1 εi, see, for ex-

ample, Bai and Perron (1998).
By maximizing (18) we obtain a distribution of the estimated break date

τ̂ that can be used to evaluate (22). To approximate the expectation, we use
50,000 repetitions for each break date and break magnitude. For each value
of τb, a θτb is obtained for which the full sample forecast and the post-break
forecast yield equal predictive accuracy using (22). This translates the null
hypothesis of equal predictive accuracy into a null hypothesis regarding the
break magnitude conditional of the break date τb. By simulating under the
null hypothesis for each τb, we obtain critical values that are conditional on
τb. Accurate estimation of the break date implies that these critical values
can be used for testing without correction. The magnitude of the breaks
that we find under the null hypothesis suggest that the estimated break
date will, in fact, be quite accurate.

5.1.2 Post-break forecast versus full-sample forecast: break mag-
nitude for equal forecast accuracy

Using (22), we simulate the break magnitude for which the full sample and
the post-break sample achieve equal predictive accuracy. Figure 1 shows
the combinations of break magnitude and break date for which equal pre-
dictive accuracy is obtained. The break magnitude is given in units of the
standardized break magnitude,

ζ1/2 =
√
T (1− τb)τb

f ′β2(β1 − β2)√
f ′β2V fβ2

(34)

so that it can be interpreted as a standard deviations from a standard nor-
mal.
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Figure 1: Break magnitude for equal predictive accuracy between post-break
and full sample forecasts
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Note: The graph shows the standardized break magnitude,

ζ1/2, in (34) for which the forecasts based on the post-break

sample and the full sample achieve the same MSFE, that is, ∆

in (22) equals zero.

The figure shows that for each break date τb, the break magnitude of
equal forecast accuracy is substantially larger than that under a known break
date, which is ζ1/2 = 1, as the MSFE of the post-break sample forecast
increases due to the uncertainty of the break date estimation. If a break
occurs early the sample, τ = 0.15, the post-break forecast is more precise
only if the break magnitude is larger than three standard deviations. The
break magnitude uniformly decreases as the break date, τ , increases and
reaches about 1.2 standard deviations at τ = 0.85.

The intuition for the downward sloping nature of the break magnitude
of equal forecast accuracy is as follows. The local-to-zero nature of the
break implies that, even asymptotically, the break date is estimated with
uncertainty and has a non-degenerate distribution around the true break
date. The uncertainty surrounding the break date implies that estimated
post-break samples may be too short, increasing the forecast variance, or
too long and include a pre-break sample, which leads to a forecast bias. The
former leads to an increase in MSFE. The latter can reduce the MSFE as
it trades off the increase in the bias for a reduction in variance (Pesaran
and Timmermann, 2007). However, this benefit decreases as the post-break
sample increases.

Additionally, supremum type test statistics require a trimming of dates
over which breaks are allowed. Trimming leads to a truncation of the dis-
tribution of break dates at both ends of the sample. From a forecasting
perspective, the effect of this truncation is not symmetric over the break
dates. If the true break is early in the sample, the distribution is left trun-
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Table 1: Critical values and size of the W and S test statistics

Critical values Size

Test α 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

W 0.01 30.54 27.29 22.29 18.22 15.82 0.01 0.01 0.01 0.01 0.01
0.05 23.71 20.99 16.74 13.30 11.37 0.07 0.06 0.06 0.04 0.03
0.10 20.44 17.99 14.13 11.04 9.36 0.13 0.12 0.11 0.09 0.06

S 0.01 2.76 2.81 2.87 2.80 2.60 0.01 0.01 0.01 0.01 0.01
0.05 2.12 2.18 2.23 2.14 1.94 0.05 0.05 0.06 0.05 0.04
0.10 1.78 1.84 1.89 1.80 1.59 0.10 0.10 0.11 0.11 0.08

Note: Reported are critical values and size for, first, W , the Wald test statistic (17)
and, second, S, the test statistic (28), which is independent of τb when the nominal size
tends to zero.

cated and the break date is likely to be, on average, estimated too late. The
forecasts are therefore less likely to benefit from the MSFE reduction of a
longer sample and more likely to have an estimation sample that is too short,
which implies a larger variance without the benefit of a bias reduction. If,
in contrast, the true break date is late in the sample, the distribution will
be right truncated and therefore lead to an estimated break date that is,
on average, too early. The estimation window will likely contain a short
pre-break sample that reduces the MSFE and is less likely to be inefficiently
short. Therefore, if the break is late, the break magnitude for which the
post-break forecast is preferred over the full-sample forecast is smaller com-
pared to the case when the break is early. This is reflected in the downward
slope of the critical break magnitude observed in Figure 1.

5.1.3 Critical values, size, and power

After finding the break magnitude for which the post-break sample forecast
and the full sample forecast yield equal predictive accuracy, we can compute
critical values for both the Wald-type test statistic, W , in (17) and the α-
asymptotic statistic, S, in (28) for a grid of break dates, τb. Condition (24),
which is required for the near optimality result does hold for all τb—details
are available in Appendix A.7.

The first line of the right panel of Table 1 shows that the test has the
correct size for α = 0.01. For α = 0.05 and 0.1 size is still very close to
the asymptotic size. At the beginning and the end of the sample, however,
some size distortion occurs. Using the corrected test statistic (28) largely
remedies these size distortions.

The critical values are given in the left panel of Table 1. Critical values
for a finer grid of the true break date can be found in Appendix B. The large
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Figure 2: Asymptotic power when testing between a post-break and full-
sample forecast at α = 0.05
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Note: The plots show the power for tests at a nominal size of α = 0.05 with the null

hypothesis given by the break magnitude depicted in Figure 1. The panels show power

for different values of the (unknown) break date. The power of infeasible test conditional

on the true break date is given as the dashed line, that of the test statistic W as the

solid line with stars, and that of the test statistic S as the dashed line with diamonds.

The solid horizontal line indicates the nominal size, and the vertical solid line indicates

the break magnitude at which equal predictive accuracy is achieved corresponding to

Figure 1.

break magnitude that yields equal forecast accuracy implies a major increase
in critical values when using the Wald test statistic (17), compared to the
standard values of Andrews (1993). For a nominal size of [0.10, 0.05, 0.01]
the critical values in Andrews are equal to [7.17, 8.85, 12.35].

The critical values for the α-asymptotic test statistic, S, in (28) are
independent of τ̂ in the limit where α → 0. Under a known break date,
critical values would be from a one-sided normal distribution, that is, they
would be [1.64, 2.33, 2.58] for nominal size of [0.10, 0.05, 0.01]. The critical
values for the corrected test, S, in (28) vary substantially less over τ̂ than
those for the Wald statistic, W , in (17). The results in Section 4.2.2 suggest
that the differences to the critical values that would be used if the break
date is known diminish as α→ 0 and this can be observed in Table 1.

Given that the break magnitudes that lead to equal forecast performance
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Figure 3: Break magnitude for equal predictive accuracy of shrinkage and
full sample forecasts
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Note: The solid line shows the standardized break magnitude

for which the shrinkage forecast (32) achieves the same MSFE

as the full sample forecast, in which case (33) equals zero.

For comparison, the dashed line shows the break magnitude

for which the post-break forecast and the full sample forecast

achieve equal MSFE.

are reasonably large, we expect the tests to have relatively good power
properties. The power curves in Figure 2 show that the power of both
tests is close to the power of the optimal test which uses the known break
date to test whether the break magnitude exceeds the boundary depicted
in Figure 1. The good power properties are true for all break dates. This
confirms that the theoretical results for vanishing nominal size extend to
conventional choices of the nominal size.

5.1.4 Shrinkage forecast versus full-sample forecast

Figure 3 shows the combination of τb and break magnitude for which the
shrinkage forecast of Section 4.3 and the full sample forecast that weights
observations equally have the same MSFE, which is represented by the solid
line in the graph. For comparison, the dashed line gives the combination
of post-break forecast and full sample forecast that have the same MSFE,
that is, the line from Figure 1. It can be seen that the break magnitude
of equal forecast performance for the shrinkage forecast is lower than for
the post-break sample forecast. This implies that the shrinkage forecast is
more precise than the post-break forecast for smaller break magnitudes for
a given break date. However, the difference is relatively small and breaks
need to be quite large before the shrinkage estimator is more precise than
the full sample estimator.

In order to determine whether to use the shrinkage forecast, critical val-
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Table 2: Critical values and size: shrinkage versus full sample forecasts

Critical values Size

Test α 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

W 0.01 28.74 25.57 20.74 17.03 15.02 0.02 0.01 0.01 0.01 0.01
0.05 22.15 19.51 15.43 12.34 10.74 0.07 0.07 0.06 0.04 0.03
0.10 19.01 16.63 12.95 10.19 8.82 0.14 0.13 0.11 0.08 0.06

S 0.01 2.82 2.87 2.91 2.82 2.63 0.01 0.01 0.01 0.01 0.01
0.05 2.18 2.24 2.27 2.17 1.98 0.05 0.05 0.06 0.05 0.04
0.10 1.85 1.90 1.93 1.82 1.63 0.10 0.10 0.11 0.11 0.08

Note: Reported are critical values and size when testing for equal MSFE of the shrinkage
forecast (32) and the full sample forecast using, first, W , the Wald test statistic in (17)
and, second, S, the test statistic (28) that is independent of τb when the nominal size
tends to zero.

ues can be obtained in a similar fashion as before and are presented in
Table 2. Again, the size is close to the theoretical size with small size dis-
turbances when using W , which are largely remedied when using S. Critical
values on a finer grid of the true break date are presented in Appendix B.

Figure 4 displays the power curves of the tests that compare the shrink-
age forecast and the full sample, equal weights forecast. Since, the break
magnitudes for equal forecast performance are similar to the post-break
sample forecast, it is not surprising that the properties in terms of size and
power of the tests for the shrinkage forecast are largely the same as those
for the post-break forecast.

5.1.5 Shrinkage forecast versus the post-break forecast

Finally, we investigate the break magnitudes that leads to equal forecast
performance of the post-break forecast and the shrinkage forecast. Figure 5
plots the ratio of the MSFE of the shrinkage forecast over that of the post-
break forecast. For nearly all break magnitudes and dates, the shrinkage
forecast outperforms the post-break forecast. Only when the break occurs
at the end of the sample and is relatively large, the post-break forecast is
slightly more accurate.

5.2 Finite sample analysis

5.2.1 Set up of the Monte Carlo experiments

We analyze the performance of the tests in finite sample for an AR(1) model
with varying degree of persistence. We consider the two tests for equal pre-
dictive accuracy between the post-break forecast and the full-sample fore-
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Figure 4: Asymptotic power when testing at α = 0.05 between the shrinkage
and full-sample forecast
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Note: The plots show asymptotic power curves when testing for equal predictive accuracy

between the shrinkage forecast (32) and the full-sample forecast using the break

magnitude depicted in Figure 3 for different values of the break date τb. For more

information, see the footnote of Figure 2.

cast based on the Wald statistic (17) and on the S-statistic (28). Next,
we consider the same test statistics but now test for equal predictive accu-
racy between the shrinkage forecast (32) and the full-sample, equal weighted
forecast. All tests are carried out at a nominal size α = 0.05, using sample
sizes of T = {120, 240, 480} and break dates τb = [0.15, 0.25, 0.50, 0.75, 0.85].
Parameter estimates are obtained by least squares, and the results are based
on 10,000 repetitions.

The data generating process (DGP) is given by

yt = µt + ρyt−1 + εt, εt ∼ N(0, σ2) (35)

where σ2 = 1 and

µt =

{
µ1 if t ≤ τbT
µ2 if t > τbT

We set µ1 = −µ2 and µ1 = 1
2
√
T
ζ1/2(τb) + 1

2
λ√

Tτb(1−τb)
. When λ = 0 the

experiments deliver the finite sample size, whereas λ = {1, 2} shows the
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Figure 5: Relative MSFE of shrinkage and post-break sample forecasts

0 1 2 3 4 5 6 7
0.7

0.8

0.9

1

1.1

ζ1/2

 

 

τ
b
 = 0.15

τ
b
 = 0.50

τ
b
 = 0.75

τ
b
 = 0.85

Note: The graph shows the relative performance of the shrinkage fore-

cast (32) and the post-break sample forecast as a function of the stan-

dardized break magnitude ζ1/2 for different values of the break date

τb. The horizontal solid line corresponds to equal predictive accuracy.

Values below 1 indicate that the shrinkage forecast is more precise.

power of the tests. The influence of the degree of persistence on the results
is analyzed by varying ρ = {0.0, 0.3, 0.6, 0.9}.

5.2.2 Results

The results in Table 3 show that for models with low and moderate persis-
tence, ρ = 0.0 and 0.3, the size of the W and S tests are extremely close
to the nominal size irrespective of the sample size and the break date. As
persistent increases to ρ = 0.9, some size distortions become apparent for
T = 120. Those do, however, diminish as T increases. These size distortions
are similar for W and S and are the result of the small effective sample size
in this setting. Power increases with λ. For T = 120 it is slightly larger
when the break is in the middle of the sample but this effect disappears
with increasing T . Overall, differences between W and S are small.

The results for the tests that compare the shrinkage forecast against the
full sample, equal weights forecast in Table 4 are very similar to the results
for the test with the post-break sample forecast under the alternative. Size
is very close to the nominal size for large effective sample sizes and power
increases in λ and, mildly, in T .

Overall, the results suggest that the W and S tests have good size and
power properties unless the persistence of the time series is very high and
this is combined with a small effective T .
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Table 3: Finite sample analysis: size and power when testing between post-break and full-sample
forecast

T = 120 T = 240 T = 480

ρ λ\τb 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

Wald-test (17)

0.0 0 0.05 0.05 0.06 0.05 0.03 0.06 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.17 0.20 0.22 0.21 0.17 0.21 0.22 0.23 0.21 0.16 0.24 0.24 0.23 0.21 0.16
2 0.43 0.48 0.52 0.53 0.47 0.52 0.54 0.55 0.53 0.48 0.57 0.56 0.56 0.55 0.49

0.3 0 0.04 0.05 0.06 0.05 0.03 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.13 0.17 0.21 0.21 0.17 0.18 0.20 0.22 0.20 0.16 0.22 0.23 0.22 0.21 0.16
2 0.33 0.40 0.47 0.50 0.46 0.46 0.50 0.53 0.52 0.47 0.54 0.54 0.55 0.55 0.48

0.6 0 0.03 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.05 0.03 0.05 0.06 0.06 0.05 0.03
1 0.08 0.12 0.19 0.20 0.16 0.13 0.17 0.20 0.20 0.15 0.18 0.20 0.22 0.21 0.15
2 0.19 0.26 0.39 0.46 0.43 0.33 0.40 0.47 0.50 0.45 0.47 0.49 0.52 0.53 0.47

0.9 0 0.02 0.05 0.10 0.09 0.06 0.02 0.04 0.08 0.07 0.04 0.03 0.05 0.06 0.06 0.04
1 0.04 0.07 0.17 0.24 0.20 0.04 0.08 0.16 0.21 0.16 0.07 0.11 0.17 0.20 0.15
2 0.09 0.12 0.24 0.44 0.44 0.09 0.14 0.28 0.43 0.39 0.16 0.24 0.37 0.46 0.41

S-test (28)

0.0 0 0.03 0.04 0.06 0.06 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.13 0.16 0.21 0.23 0.22 0.16 0.18 0.21 0.23 0.21 0.17 0.19 0.21 0.23 0.21
2 0.34 0.41 0.48 0.56 0.55 0.43 0.48 0.52 0.56 0.56 0.48 0.51 0.53 0.58 0.56

0.3 0 0.03 0.04 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.09 0.14 0.19 0.23 0.22 0.13 0.16 0.20 0.23 0.20 0.16 0.18 0.21 0.23 0.21
2 0.25 0.34 0.44 0.53 0.54 0.36 0.43 0.50 0.55 0.55 0.44 0.49 0.52 0.58 0.56

0.6 0 0.02 0.04 0.06 0.07 0.05 0.03 0.04 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.05
1 0.05 0.09 0.17 0.23 0.21 0.09 0.13 0.19 0.22 0.21 0.13 0.16 0.20 0.23 0.21
2 0.13 0.21 0.36 0.50 0.52 0.24 0.33 0.44 0.53 0.53 0.37 0.43 0.49 0.56 0.55

0.9 0 0.02 0.04 0.10 0.12 0.08 0.02 0.03 0.07 0.08 0.06 0.02 0.04 0.06 0.07 0.05
1 0.03 0.05 0.16 0.28 0.26 0.02 0.06 0.14 0.24 0.22 0.04 0.08 0.16 0.23 0.21
2 0.06 0.08 0.22 0.49 0.54 0.05 0.10 0.25 0.47 0.49 0.10 0.18 0.33 0.50 0.51

Note: The table presents finite sample size and power properties for the test comparing the post-break and full sam-
ple based forecasts. The DGP is yt = µt+ρyt−1 +εt, εt ∼ N(0, 1), µ1 = −µ2 and µ1 = 1

2
√
T
ζ1/2(τb)+ 1

2
λ√

Tτb(1−τb)

where ζ1/2(τb) corresponds to Figure 1. The empirical size of the tests is obtained when λ = 0 and power when
λ = {1, 2}. Tests are for a nominal size of 0.05.
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Table 4: Finite sample analysis: size and power when testing between shrinkage and full-sample
forecast

T = 120 T = 240 T = 480

ρ λ\τb 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

Wald-test (17)

0.0 0 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.04 0.03 0.07 0.07 0.06 0.05 0.03
1 0.18 0.21 0.22 0.21 0.16 0.22 0.23 0.22 0.20 0.15 0.24 0.24 0.23 0.21 0.15
2 0.45 0.49 0.52 0.52 0.46 0.53 0.55 0.55 0.53 0.47 0.57 0.57 0.56 0.54 0.48

0.3 0 0.05 0.06 0.06 0.05 0.03 0.06 0.06 0.06 0.04 0.03 0.06 0.07 0.06 0.05 0.03
1 0.15 0.19 0.22 0.20 0.16 0.20 0.21 0.22 0.20 0.15 0.23 0.23 0.22 0.21 0.15
2 0.36 0.42 0.48 0.51 0.45 0.48 0.51 0.53 0.52 0.46 0.55 0.55 0.55 0.54 0.47

0.6 0 0.04 0.06 0.07 0.05 0.04 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.10 0.14 0.20 0.20 0.16 0.15 0.18 0.21 0.20 0.15 0.20 0.21 0.22 0.20 0.15
2 0.22 0.30 0.42 0.47 0.43 0.36 0.42 0.49 0.50 0.44 0.48 0.51 0.53 0.52 0.46

0.9 0 0.03 0.07 0.12 0.10 0.07 0.04 0.05 0.09 0.07 0.05 0.04 0.06 0.07 0.06 0.04
1 0.06 0.09 0.21 0.26 0.21 0.06 0.10 0.19 0.22 0.17 0.09 0.13 0.20 0.21 0.16
2 0.11 0.15 0.30 0.48 0.45 0.12 0.18 0.34 0.46 0.41 0.20 0.28 0.41 0.47 0.42

S-test (28)

0.0 0 0.04 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.13 0.16 0.21 0.24 0.22 0.15 0.18 0.21 0.23 0.20 0.17 0.19 0.21 0.23 0.20
2 0.34 0.42 0.49 0.56 0.55 0.42 0.47 0.52 0.56 0.55 0.46 0.50 0.53 0.58 0.56

0.3 0 0.03 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.10 0.14 0.20 0.23 0.22 0.13 0.17 0.20 0.23 0.20 0.16 0.18 0.21 0.23 0.20
2 0.25 0.35 0.45 0.54 0.54 0.36 0.43 0.50 0.56 0.54 0.43 0.48 0.52 0.58 0.55

0.6 0 0.03 0.05 0.07 0.07 0.05 0.03 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.06 0.05
1 0.06 0.10 0.19 0.24 0.22 0.09 0.14 0.19 0.23 0.20 0.13 0.16 0.20 0.23 0.20
2 0.14 0.23 0.39 0.52 0.52 0.25 0.35 0.45 0.54 0.53 0.37 0.43 0.49 0.56 0.55

0.9 0 0.02 0.05 0.12 0.12 0.09 0.02 0.04 0.09 0.09 0.06 0.03 0.04 0.07 0.08 0.06
1 0.03 0.06 0.19 0.31 0.28 0.03 0.07 0.17 0.25 0.23 0.05 0.10 0.18 0.25 0.21
2 0.06 0.11 0.27 0.53 0.56 0.07 0.12 0.30 0.50 0.51 0.12 0.21 0.37 0.52 0.52

Note: The table presents finite sample size and power properties of the tests comparing the shrinkage forecast (32)
and the full-sample, equal weights forecast, using a nominal size of 0.05. For further details, see the footnote of
Table 3.

28



6 Application

We investigate the importance of structural breaks for 130 macroeconomic
and financial time series from the St. Louis Federal Reserve (FRED-MD)
database, which is a monthly updated database. We use the vintage from
May 2016. The data are described by McCracken and Ng (2016), who
suggest various transformations to render the series stationary and to deal
with discontinued series or changes in classification. In the vintage used
here, the data start in January 1959 and end in April 2016. After the
transformations, all 130 series are available from January 1960 until October
2015. Our first forecast is for July 1970 and we recursively construct one-
step ahead forecasts until the end of the sample.

The data are split into 8 groups: output and income (OI, 17 series), labor
market (LM, 32 series), consumption and orders (CO, 10 series), orders and
inventories (OrdInv, 11 series), money and credit (MC, 14 series), interest
rates and exchange rates (IRER, 21 series), prices (P, 21 series), and stock
market (S, 4 series).

Following Stock and Watson (1996), we focus on linear autoregressive
models of lag length p = 1 and p = 6 and test whether the intercept is
subject to a break. We estimate parameters on a moving windows of 120
observations to decrease the likelihood of multiple breaks occurring in the
estimation sample. Test results are based on heteroskedasticity robust Wald
statistics, which use the following estimate of the covariance matrix V̂ i =
(X ′iXi)

−1X ′iΩ̂iXi(X
′
iXi)

−1 with [Ω̂i]kl = ε̂2
k/(1−hk)2 if k = l and [Ω̂i]kl =

0 otherwise, and hk is the k-th diagonal element of PX = X(X ′X)−1X ′.
See MacKinnon and White (1985) and Long and Ervin (2000) for discussions
of different heteroskedasticity robust covariance matrices. We have also
obtained test results and forecasts using a larger window of 240 observations
and using the homoskedastic Wald test and, qualitatively, our results do not
depend on these choices.

6.1 Structural break test results

In this forecast exercise, we will refer to the test of Andrews (1993) as supW,
the Wald test statistic (17) as W, the test statistic (28) as S, and, when the
alternative is the shrinkage forecast, as W s and Ss. For all tests we use
α = 0.5 and τmin = 0.15. In Table 5, we report the fraction of estimation
samples where the tests indicate a break. It is clear that a large fraction of
the breaks picked up by supW are judged as irrelevant for forecasting by
W, S, W s, and Ss. The fraction of forecasts for which a break is indicated
is lower by a factor of two for the AR(1) and by factor of up to three for the
AR(6).

Figure 6 displays the number of estimation samples per series for which
the tests were significant when forecasting with the AR(1), where within

29



Table 5: Fractions of estimation samples with a
significant structural break

supW W S W s Ss

AR(1) 0.219 0.102 0.108 0.119 0.126
AR(6) 0.114 0.037 0.042 0.046 0.053

Note: supW refers to the Andrews’ (1993) sup-Wald test,
W and S refer to the tests developed in this paper that
compare post-break and full sample forecasts, and W s

and Ss refer to the tests that compare shrinkage and full
sample forecasts. All tests are carried out at α = 0.05.

each category we sort the series based on the fraction of breaks found by
W. Across all categories the supW test is more often significant than the
W and S tests for both, post-break and shrinkage forecasts. Yet, we see
substantial differences between categories. Whereas in the labor market and
consumption and orders categories some of the series contain a significant
break in up to 70% of the estimation samples when the W or S tests are used,
the prices and stock market series hardly show any significant breaks from
a forecasting perspective. This finding concurs with the general perception
that, for these type of time series, simple linear models are very hard to beat
in terms of MSFE.

Figure 7 displays the number of estimation samples with significant
breaks for the AR(6) model. Compared to the results for the AR(1) in
Figure 6, far fewer estimation samples contain a significant break, and this
is true even in the consumption and orders category, which contained series
with many breaks when using the AR(1). Consistent with the results for
the AR(1), however, the W and S tests find fewer estimation samples with
breaks than the supW test for virtually all series.

Figure 8 shows the occurrence of significant breaks over the different
estimation samples when using the AR(1) model, where the end date of the
estimation sample is given on the horizontal axis. In the top panel are the
results for the test comparing the post-break estimation window with the
full estimation window. In the bottom panel are the tests comparing the
shrinkage estimator and the full sample, equal weights estimator. It is clear
that the supW test finds more breaks in for the vast majority of estimation
samples, whereas the results from the W and S tests are extremely similar.

A number of interesting episodes can be observed. While in the initial
estimation samples the tests find a comparable number of samples with
beaks, from 1985 the supW test finds many more series that contain breaks
that are insignificant for the W and S test. This remains true until 2009
where the W and S tests find the same and, in the case of the shrinkage
forecast, even more breaks that are relevant for forecasting than the supW
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Figure 6: Fraction of significant structural break test statistics per series -
AR(1)
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Note: The upper panel depicts the fraction of estimation samples with a signif-

icant break when testing under the alternative of the post-break forecast; the

lower panel when testing under the alternative of the shrinkage forecast (32).

Dashed lines indicate the fraction of estimation samples with significant sup-

Wald test, dashed-dotted lines indicate the fraction of estimation samples where

the break test W in (17) indicates a break, and solid lines indicate the fraction

of estimation samples with significant S test in (28).

test. From 2010 onwards, breaks that are relevant for forecasting decrease
sharply, whereas the supW tests continues to find a large number of breaks.
The intuition is that, as demonstrated in Figures 1 and 3, breaks early in
the sample are less likely to be relevant for forecasting. However, the SupW
test does not use this information.

Figure 9 shows the results for the AR(6) model. In general, all tests
find fewer estimation samples with breaks compared to the AR(1) model.
The evolution over the estimation samples is, however, similar to the AR(1)
case. In the initial estimation samples up to 1985 all tests agree that a small
number of series are subject to a structural break. From 1985 to 1990, how-
ever, the supW test finds breaks in up to a third of the estimation samples,
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Figure 7: Fraction of significant structural break test statistics per series -
AR(6)
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Note: See footnote of Table 6

most of which the W and S tests do not find important for forecasting. The
same is true for breaks around 2000. In contrast, in the period following the
dot com bubble and following the financial crisis of 2008/9 the W and the
S tests find as many and, in the case of the shrinkage forecasts, more se-
ries, where taking a break into account will improve forecast accuracy than
the supW test. Again, the number of series that should take a break into
account declines sharply towards the end of our sample when using the W
and S tests but not when using the supW tests.

6.2 Forecast accuracy

Given the different test results, we now investigate whether forecasts condi-
tional on the W and S tests are more accurate than forecasts based on the
supW test. We use each test to determine whether to use the post-break or
the full sample for forecasting or, alternatively, whether to use the shrink-
age or the equal weights forecast and, given these results, we construct the
respective forecast.

32



Figure 8: Fraction of significant structural break test statistics over estima-
tion samples – AR(1)
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Note: The plots show the fractions of series with a significant break for each

estimation sample when using an AR(1) model with a break in intercept. The top

panel shows results when testing between the post-break sample based forecast

and the full sample based forecast and the lower panel when testing between the

shrinkage forecast and the full sample, equal weights forecast. The dashed line

indicates the fraction of series when testing using the standard sup-Wald test at

α = 0.05, the solid line when testing using the S-test in (28), and the dashed-

dotted line when testing using the W-test in (17). The dates displayed on the

horizontal axis are the end dates of the estimation samples.

Table 6 reports the MSFE of the respective forecasting procedures rela-
tive to the MSFE of the forecast based on the supW test of Andrews with
the results for the AR(1) in the top panel and those for the AR(6) in the
bottom panel. For each model, we report the average relative MSFE over all
series in the first line, followed by the average relative MSFE for the series
in the different categories. We report only the results for the estimation
windows where at least one test finds a break as the estimation samples
where no test finds a break will to lead to identical full sample forecasts.
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Figure 9: Fraction of significant structural break test statistics over estima-
tion samples – AR(6)
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Note: The plots show the fractions of series with a significant break for each

estimation sample when using an AR(6) model with a break in intercept. For

additional details, see the footnote of Figure 8.

The results show that using the W test in place of the supW test leads
to a 5.5% improvement in accuracy on average for the AR(1) and a 7.6% im-
provement in accuracy on average for the AR(6) model. This gain is similar
for the S test with improvements of 4.9% and 6.5%. These improvements
are found for series in all categories. The only exception is the use of the
S test in the AR(1) model on the category ‘prices’. This suggests that the
improvements are robust across the different series.

When the shrinkage forecast is used in conjunction with the W s or Ss

test, the accuracy of the forecasts is very similar as those of the post-break
forecasts. This can be expected since we reject the test when the Wald
statistic, that governs the amount of shrinkage, is relatively large. This
implies that upon rejection of the test statistic, a forecast is used that is
relatively close to the post-break forecast. The last column shows that using
the shrinkage forecast in conjunction with the supW test leads to forecasts
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Table 6: Relative MSFE compared to the standard sup-Wald
test

Post-break Shrinkage

W S W S supW

AR(1) All series 0.948 0.953 0.948 0.949 0.983

OI 0.972 0.981 0.970 0.972 0.986
LM 0.950 0.951 0.948 0.948 0.979
CO 0.978 0.973 0.975 0.969 0.992
OrdInv 0.955 0.974 0.955 0.973 0.983
MC 0.966 0.974 0.971 0.972 0.991
IRER 0.878 0.891 0.889 0.892 0.974
P 0.973 1.004 0.969 1.010 0.988
S 0.924 0.961 0.926 0.928 0.979

AR(6) All series 0.929 0.938 0.935 0.939 0.982

OI 0.949 0.978 0.960 0.972 0.983
LM 0.953 0.961 0.951 0.959 0.978
CO 0.956 0.954 0.955 0.952 0.989
OrdInv 0.926 0.953 0.935 0.948 0.983
MC 0.948 0.957 0.960 0.974 0.990
IRER 0.851 0.854 0.872 0.870 0.975
P 0.921 0.940 0.939 0.914 0.985
S 0.963 0.957 0.961 0.959 0.987

Note: The table reports the average of the ratio of the respective fore-
casts’ MSFE over that of the forecasts resulting from the sup-Wald test of
Andrews (1993) at α = 0.05. Forecasts for which none of the tests indicate
a break are excluded. Results are reported for the test statistic W in (17)
and S in (28). ‘Post-break’ and ‘Shrinkage’ indicate that under the alter-
native the post-break forecast, respectively the shrinkage forecast (32), are
used. The acronyms in the first column with corresponding series after
excluding series without breaks (AR(1)|AR(6)): OI: output and income
(16|17 series), LM: labor market (28|29), CO: consumption and orders
(10|10), OrdInv: orders and inventories (11|11), MC: money and credit
(2|8), IRER: interest rates and exchange rates (17|21), P: prices (2|6), S:
stock market (4|4).

that, while more precise than post-break forecasts based on the same test,
are clearly dominated by the W s and Ss tests. In fact, for all categories and
both models the W s test leads to more accurate forecasts, as does the Ss

tests with the exception of the AR(1) and prices.
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7 Conclusion

In this paper, we formalize the notion that ignoring small breaks may im-
prove the accuracy of forecasts. We quantify the break magnitude that leads
to equal forecast accuracy between a forecast based on the full sample and
one based on a post-break sample. This break magnitude is substantial,
which points to a large penalty that is incurred by the uncertainty around
the break date. A second finding is that the break magnitude that leads to
equal forecast performance depends on the unknown break date.

We derive a test for equal forecast performance. Under a local break,
no consistent estimator is available for the break date. Yet, we are able to
prove near optimality of our test in the sense that the power of an infeasible
test conditional on the break date is achieved for small enough nominal size.
This allows the critical values of the test to depend on the estimated break
date. We show that under the break magnitudes we consider under our null
hypothesis, this optimality is achieved relatively quickly, that is, for finite
nominal size. Simulations confirm this and show only a minor loss of power
compared to the test that is conditional on the true break date.

We also consider the optimal weights forecast of Pesaran et al. (2013) and
show that it is a shrinkage forecast with our test statistic as the shrinkage
coefficient. Our test extends in a straightforward way to test whether the
shrinkage forecast will be more accurate than the full sample forecast.

We apply the test to a large set of macroeconomic time series and find
that breaks that are relevant for forecasting are rare. Pretesting using the
test developed here improves over pretesting using the standard test of An-
drews (1993) in terms of MSFE. Similar improvements can be made by
considering an optimal weights or shrinkage estimator under the alterna-
tive.
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Appendix A Additional mathematical details

A.1 A break of known timing

Forecasts are obtained using (9)

ŷT+h = fT+h(β̂2, δ̂|IT )

where the information set IT contains the regressors required for the fore-
cast.

For a known break date, the results of the previous section imply the
following asymptotic distribution of the parameters

√
T

 β̂1 − β1

β̂2 − β2

δ̂ − δ

 d→ N

 0
0
0

 ,

 1
τV + H̃ H̃ −L
H̃ 1

1−τV + H̃ −L
−L′ −L′ H−1


(36)

For the full sample estimator we have

√
T

(
β̂F − β2

δ̂ − δ

)
d→ N

[(
τb(β1 − β2)

0

)
,

(
V + H̃ −L
−L′ H−1

)]
(37)

and
β̂F −

[
β̂2 + τb(β̂1 − β̂2)

]
p→ 0

Define fβ2 =
∂fT+h(β2,δ|IT )

∂β2
and f δ =

∂fT+h(β2,δ|IT )
∂δ . Using a first order

Taylor expansion, (36) and (37), we have that

√
T
(
fT+h(β̂2, δ̂|IT )− fT+h(β2, δ|IT )

)
=
√
T
[
f ′β2(β̂2 − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
d→ N (0,Σβ2 + Σr)

√
T
(
fT+h(β̂F , δ̂|IT )− fT+h(β2), δ|IT )

)
=
√
T
[
f ′β2(β̂F − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
d→ N

(
τbf
′
β2(β1 − β2),ΣβF + Σr

)
where

Σβi = plim
T→∞

Tf ′β2Var(β̂i)fβ2 , for i = 2, F

Σr = plim
T→∞

T
(
f ′δVar(δ̂)f δ + 2f ′β2Cov(β̂F , δ̂)f δ

) (38)

and we use that, asymptotically, T
(

Cov(β̂F , δ̂)− Cov(β̂2, δ̂)
)

p→ 0. Using

previous results on the covariance matrix of the estimators, and the notation
in (11), we have

Σβ2 =
1

1− τb
f ′β2V fβ2 + f ′β2H̃fβ2

ΣβF = f ′β2V fβ2 + f ′β2H̃fβ2
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For the expected MSFEs using β2 and βF , we have

lim
T→∞

TE

[(
fT+h(β̂2, δ̂|IT )− fT+h(β2, δ|IT )

)2
]

=
1

1− τb
f ′β2V fβ2 + f ′β2H̃fβ2 + Σr

lim
T→∞

TE

[(
fT+h(β̂F , δ̂|IT )− fT+h(β2, δ|IT )

)2
]

=
[
τbf
′
β2(β1 − β2)

]2
+ f ′β2V fβ2 + f ′β2H̃fβ2 + Σr

Hence, the full sample based forecast improves over the post-break sample
based forecast if

ζ = T (1− τb)τb

[
f ′β2(β1 − β2)

]2
f ′β2V fβ2

≤ 1 (39)

This reiterates that the null hypothesis of equal mean squared forecast error
translates into a hypothesis on the standardized break magnitude, ζ.

Similar to Section 2, a test for H0 : ζ = 1 can be derived by by noting
that, asymptotically, TVar(β̂1 − β̂2)

p→ 1
τb(1−τb)V and, therefore,

ζ̂ = T (1− τb)τb

[
f ′β2(β̂1 − β̂2)

]2

ω̂

d→ χ2(1, ζ) (40)

where ω̂ is a consistent estimator of f ′β2V fβ2 . The test statistic, ζ̂, can be
compared against the critical values of the χ2(1, 1) distribution to test for
equal forecast performance.

The above can be immediately applied to the simple structural break
model (1) where fT+1(β̂2;xT+1) = x′T+1β̂2, and fβ2 = xT+1. The full
sample forecast is more accurate if

ζ = Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1 (41)

identical to the result in (4).

A.2 Proof of Lemma 1

Define ∆(τ̂) = ∆1 −∆2 where

∆1 = lim
T→∞

TE

[(
f ′β2(β̂2(τ̂)− β2) + f ′β2(δ̂ − δ)

)2
]
/f ′β2V fβ2

= lim
T→∞

TE

[(
f ′β2(β̂2(τ̂)− β2)

)2
+
(
f ′β2(δ̂ − δ)

)2
+

+2f ′β2(β̂2(τ̂)− β2)f ′β2(δ̂ − δ)
]
/f ′β2V fβ2

(42)
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and similarly for ∆2

∆2 = lim
T→∞

TE

[(
f ′β2(β̂F − β2) + f ′β2(δ̂ − δ)

)2
]
/f ′β2V fβ2

= lim
T→∞

TE

[(
f ′β2(β̂F − β2)

)2
+
(
f ′β2(δ̂ − δ)

)2
+

+2f ′β2(β̂F − β2)f ′β2(δ̂ − δ)
]
/f ′β2V fβ2

(43)

To prove the theorem, we need that

lim
T→∞

TE
[
f ′β2(β̂2(τ̂)− β̂F )f ′β2(δ̂ − δ)

]
/f ′β2V fβ2 = 0

Define

X(τ) = f ′β2(β̂2(τ)− β̂F )/
√
/f ′β2V fβ2

Y = f ′β2(δ̂ − δ)/
√
f ′β2V fβ2

Note that X2
τ = ζ̂(τ), so that τ̂ is found by maximizing X2

τ . We know that
for given τ , asymptotically these are jointly normally distributed. It is easy
to show that

E[X(τ)Y ] = 0

for any given τ . Together with the joint normality of X(τ) and Y , this
implies independence between X(τ) and Y for given τ , i.e. X(τ) ⊥ Y .

However, we need to prove

X(τ̂) ⊥ Y, τ̂ = arg sup
τ∈Π

X(τ)2

Denote
g(X(τ)) = sup

τ∈Π
X(τ), h(X(τ)) = inf

τ∈Π
X(τ)

Since X(τ) is a stochastic process with continuous sample paths, g(·) and
h(·) are measurable functions of X(τ), which implies

g(X(τ)) ⊥ Y, h(X(τ)) ⊥ Y

In terms of g(·) and h(·) we can write

X(τ̂) = f(g(·), h(·)) = g(·) + [h(·)− g(·)]I[g(·) + h(·) ≤ 0]

with I[·] the indicator function. Now g(X(τ)) and h(X(τ)) are measurable
functions of X(τ) and f(g(·), h(·)) is a measurable function of g(·), h(·).
Since compositions of measurable functions are measurable, X(τ̂) is a mea-
surable function of X(τ) as well. Since f(g(X(τ)), h(X(τ)) and Y are in-
dependent if X(τ) and Y are independent and f(g(X(τ)), h(X(τ))) is a
measurable function of X(τ), we have that X(τ̂) is independent of Y . Then
E[X(τ̂)Y ] = 0. �
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A.3 Proof of Theorem 1

To prove that only points in a small neighborhood of the true break date
contribute to the probability of exceeding a distant boundary, we require
the following preliminaries.

Lemma 2 Suppose Z(τ) is a symmetric Gaussian process, i.e. P (Z(τ) >
u) = P (−Z(τ) > u), then as u→∞

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

where c = ±1, τ ∈ I = [τmin, τmax], and the supremum is taken jointly over
τ and c.

Proof: Consider first µ(τ ; θτb) > 0 then

P(Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P(Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P(−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P(Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(44)

where τ ∈ I is shorthand notation for “for some τ ∈ I”. When µ(τ ; θτb) < 0
we have

P(−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P(Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P(Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P(Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(45)

The bounds in the second lines of (44) and (45) are equal or larger then
the bounds in the first lines. It follows from the results below that the
crossing probabilities over the larger bounds are negligible compared to the
crossing probabilities over the lower bounds. This implies that for any sign
of µ(τ ; θτb) as u→∞

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

(46)

as required. �

In the structural break model, Z(τ) is a locally stationary Gaussian pro-
cess with correlation function r(τ, τ + s), defined as follows (Hüsler (1990))

Definition 1 (Local stationarity) A Gaussian process is locally station-
ary if there exists a continuous function C(τ) satisfying 0 < C(τ) <∞

lim
s→0

1− r(τ, τ + s)

|s|α
= C(τ) uniformly in τ ≥ 0
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The correlation function can be written as

r(τ, τ + s) = 1− C(τ)|s|α as s→ 0

The standardized Brownian bridge that we encounter in the structural break
model is a locally stationary process with α = 1 and local covariance function
C(τ) = 1

2
1

τ(1−τ) . Since τ ∈ [τmin, τmax] with 0 < τmin < τmax < 1, it holds

that 0 < C(τ) <∞.

Lemma 3 Suppose Z(τ) is a locally stationary process with local covariance
function C(τ) then for δ(u) > 0 if δ(u)u2 →∞ and δ(u)→ 0 as u→∞

lim
u→∞

P

(
sup

[τ,τ+δ(u)]
Z(t) > u

)
=

1√
2π
δ(u)u exp

(
−1

2
u2

)
C(τ) (47)

Proof: see Hüsler (1990).

To prove Theorem 1, we start by noting that for τ ∈ I = [τmin, τmax]

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P

(
sup
τ∈I

√
Q∗(τ) > u

)
= P

(
sup
τ∈I
|Z(τ) + µ(τ ; θτb)| > u

)
= P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
with c = ±1

= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

where the supremum is taken jointly over τ ∈ I and c. The last equality
follows from Lemma 2. Now we proceed along the lines of Piterbarg (1996).

Consider a region close to τb defined by I1 = [τb− δ(u), τb + δ(u)]. In I1,
the minimum value of the boundary is given by

b = inf
τ∈I1

[u− |µ(τ ; θτb)|] = u− |µ(τb; θτb)| (48)

and therefore

lim
u→∞

PI1 = lim
u→∞

P(Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≤ lim
u→∞

P(Z(τ) > b for some τ ∈ I1)

= 2δ(b)b
1√
2π

exp

(
−1

2
b2
)
C(τb)

=
2δ(b)√

2π
exp

(
−1

2
b2 + log b

)
C(τb)

where the third line follows from (47).
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Next, define the region outside of I1 as IA = I\I1. Then in IA, the
minimum value of the boundary is given by

bA = u− |µ(τb + δ(u); θτb)| (49)

We now expand −|µ(τb + δ(u); θτb)| around δ(u) = 0. Some care must be
taken with regard to the difference between approaching τb from the left or
from the right

−|µ(τb + δ(u); θτb)| = −|µ(τb; θτb)|+ γδ(u) +O
[
δ(u)2

]
(50)

where γ = γ+I[δ(u) > 0] + γ−I[δ(u) < 0], γ+ =
∂µ(τ ;θτb )

∂τ

∣∣∣
τ↓τb

and γ− =

∂µ(τ ;θτb )

∂τ

∣∣∣
τ↑τb

. The important thing to note is that since µ(τ ; θτb) achieves

a minimum at τ = τb we have that γ+ > 0 and γ− < 0, and consequently
γδ(u) > 0. Then bA = b+ γδ(u) and

lim
u→∞

PIA = lim
u→∞

P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ IA)

≤ lim
u→∞

P (Z(τ) > bA for some τ ∈ IA)

≤ 1√
2π

exp

(
−1

2
b2 − bγδ(u)− 1

2
γ2δ(u)2 + log(b+ γδ(u))

)
C

(51)

where we define C by noting that∑
Ik∈IA

C(kδ(u))δ(u)
δ(u)→0−→

∫
IA
C(τ)dτ ≤

∫
I
C(τ)dτ = C <∞ (52)

with Ik representing non-overlapping intervals of width δ(u) such that
∞⋃
k=2

Ik =

IA and kδ(u) ∈ Ik
Compare (51) to the probability of a test with a known break date to

exceed the critical value

P0 = P (Z(τb) > u− |µ(τb; θτb)|) =
1√
2π

exp

(
−1

2
b2 − log(b)

)
(53)

where we use that

1√
2π

∫ ∞
u

exp

(
−1

2
x2

)
dx→ 1√

2πu
exp

(
−1

2
u2

)
as u→∞

Ignoring the lower order term −1
2γ

2δ(u)2 + log(b + γδ(u)), equation (51)
contains an extra term exp(−bγδ(u)) compared to (53). This term is de-
creasing as u increases, as we argued above that γδ(u) > 0. Recalling (48),
this implies that PIA = o(P0) if

uδ(u)

log u
→∞
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Then, if
δ(u) = u−1 log2(u), (54)

all intervals outside of I1 contribute o(P0) to the probability of crossing the
boundary u. Under (54), we have that for PI1 as u→∞

PI1 ≤ PI ≤ PI1 + PIA
≤ PI1 + o(P0)

We now only need to note that

PI1 = P(Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≥ P(Z(τb) > u− |µ(τb; θτb)|) = P0

to conclude that

P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)
u→∞−→ PI1(1 + o(1))

which completes the proof. �

Note that, in (51), the term exp(bδ(u))−γ ensures that PIA = o(P1). In
the structural break model, we see that (50) is given by µ(τb + δ(u); θτb) =
θτb
√
τb(1− τb) − 1

2θτb
1√

τb(1−τb)
δ(u) + O

[
δ(u)2

]
. It is clear that γ scales

linearly with the break magnitude. Therefore, for a sufficiently large break,
asymptotic optimality results are expected to extend to the practical case
when u is finite. The simulations of asymptotic power presented in Section 5
confirm this.

A.4 Proof of Theorem 2

Within the interval I1, we have u− ≤ u(τb) ≤ u+ and u− ≤ u(τ̂) ≤ u+. The
lower and upper bounds satisfy

u− = u(τb)−
∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ δ(u) +O(δ(u)2)

≥ u(τb)− Cδ(u) +O(δ(u)2)

u+ = u(τb) +

∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ δ(u) +O(δ(u)2)

≤ u(τb) + Cδ(u) +O(δ(u)2)

(55)

where C <∞ and we used Assumption 3. Then

ε = P (sup
τ
Q∗(τ) > u2

−)− P (sup
τ
Q∗(τ) > u2

+)

=
1√
2π
δ(u)u(τb) exp

(
−1

2
u(τb)

2

)
[exp(−Cδ(u))− exp(+Cδ(u))]C(τb) + o(·)

→ 0 (56)
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where o(·) contains lower order terms and the last line uses δ(u) = u−1 log2(u),
which was shown in Theorem 1. Since

P

(
sup
τ
Q∗(τ) > u2

+

)
≤ P

(
sup
τ
Q∗(τ) > u(τb)

2

)
≤ P

(
sup
τ
Q∗(τ) > u2

−

)

P

(
sup
τ
Q∗(τ) > u2

+

)
≤ P

(
sup
τ
Q∗(τ) > u(τ̂)2

)
≤ P

(
sup
τ
Q∗(τ) > u2

−

)
(56) implies that P

(
supτ Q

∗(τ) > u(τb)
2
)

= P
(
supτ Q

∗(τ) > u(τ̂)2
)
. �

A.5 Proof of Theorem 3

To prove Theorem 3, we require the following lemma

Lemma 4 (Convergence of critical values) Let u(τb) be the critical value
that controls size when a break occurs at τb and (17) is used as a test statis-
tic. Let v(τb) be the critical value when using the test statistic with τ = τb,
then u(τb)− v(τb)→ 0.

Proof: By definition of the critical values

P

[
sup
τ
Q∗(τ) > u(τb)

2

]
= P [Z(τ) > u(τb)− |µ(τ ; θτb)| for some τ ∈ I1] = α

P
[
Q∗(τb) > v(τb)

2
]

= P [Z(τb) > v(τb)− |µ(τb; θτb)|] = α

Since τ in the first line is contained in I1, we have by a Taylor series expan-
sion of µ(τ ; θτb) around τb that max |µ(τ ; θτb)| − |µ(τb; θτb)| = O[δ(u)] and
consequently, maxu(τb) − v(τb) = O(δ(u)). Since δ(u) → 0 as u → ∞, the
difference in the critical values u(τb)− v(τb)→ 0 as u→∞. �

A proof of Theorem 3 readily follows. With τ̂ from (20) we have

PHa

[
sup
τ
Q∗(τ) > u(τ̂)2

]
= PHa [Z(τ̂) > u(τ̂)− µ(τ̂ ; θτb)]

Under the slowly varying assumption, u(τ̂) − µ(τ̂ ; θτb) has a unique mini-
mum on I1 at τ̂ = τb. Taking the supremum therefore necessarily leads to
at least as many exceedances as considering τ = τb alone, which proves the
inequality in (27). The last line of (27) follows from Lemma 4. �

A.6 Proof of Corollary 1

The test statistic converges to S(τ̂) → supτ |Z(τ) + µ(τ ; θτb)| − |µ(τ̂ ; θτ̂ )|
where τ̂ maximizes the first term. As shown before, exceedances of a high
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boundary are concentrated in the region [τb−δ(u), τb+δ(u)] where δ(u)→ 0
as u→∞. Then

lim
u→∞

P(S(τ̂) > u) = lim
u→∞

P

(
sup
I1
|Z(τ) + µ(τ ; θτb)| − |µ(τ̂ ; θτ̂ )| > u

)
= lim

u→∞
P(Z(τ̂) > u− |µ(τ̂ ; θτb)|+ |µ(τ̂ ; θτ̂ )|)

Under the slowly varying assumption, the difference−|µ(τ̂ ; θτb)|+|µ(τ̂ ; θτ̂ )| =
O[δ(u)]. This implies that the critical values of S(τ̂) are independent of τb
in the limit where u→∞. �

A.7 Verifying condition (24)

In order to very that (24) holds, that is, that the condition for near opti-
mality, ∂u(τb)/∂τb < 1/[τb(1 − τb)], holds. Observe that, in Figure 10, the
dashed line, which depicts the derivative of the critical values for α = 0.05
as a function of the break date τb and is obtained via simulation, is clearly
below the solid line, which depicts the upper bound [τb(1− τb)]−1.

Figure 10: Dependence of the critical values on the break date

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4
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8

τ
b

 

 1/[τ
b
(1−τ

b
)]

∂ u / ∂ τ
b

Note: The dashed line depicts the derivative of the critical values for

α = 0.05 as a function of the break date τb. The solid line depicting the

upper bound [τb(1− τb)]−1.

A.8 Uniqueness of the break magnitude that yields equal
forecast accuracy

In order to ensure the uniqueness of the break magnitude that leads to equal
forecast accuracy, we evaluate ∆ in (22) and ∆s in (33) numerically using
the simulation set-up described in Section 5. The results in Figure 11 show
that the value of |θτb | that leads to equal forecast accuracy is unique.
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Figure 11: Difference in asymptotic MSFEs, ∆ and ∆s
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Note: The left panel shows the difference in the asymptotic MSFE between the post-break

forecast and the full-sample forecast as a function of the standardized break magnitude

ζ1/2 in (22) for τb = {0.15, 0.50, 0.75, 0.85}. The right panel shows the difference in MSFE

between the shrinkage forecast and the full-sample forecast in (33).

A.9 Derivation of equation (29)

From a Taylor series expansion it follows that

E
[
T
(
ŷST+h − fT+h(β2)

)2]
= E

[
T
(
ωf ′β2β̂1 + (1− ω)f ′β2β̂2 − f ′β2β2

)2
]

+ o(1)

= ω2E

[
T
(
f ′β2(β̂1 − β̂2)

)2
]

+
1

τb
f ′β2V fβ2

+ 2ωf ′β2E
[
T
(
β̂1 − β̂2

)(
β̂2 − β2

)]
fβ2 + o(1)

We analyze the first and third term of the second equality separately.
Using a bias-variance decomposition, the expectation in the first term

can be calculated as

E

[
T
(
f ′β2(β̂1 − β̂2)

)2
]

= E
[
T
(
f ′β2(β̂1 − β̂2)

)]2
+ TVar

[
f ′β2(β̂1 − β̂2)

]
= T

(
f ′β2 (β1 − β2)

)2
+ f ′β2

(
1

τb
+

1

1− τb

)
V fβ2

since Cov(β̂1, β̂2) = 0.
The term linear in ω is given by

f ′β2E
[
T
(
β̂1 − β̂2

)(
β̂2 − β2

)]
fβ2 = −f ′β2E

[
T (β1 − β2)β′2

]
fβ2

+ f ′β2E
[
T β̂1β̂

′
2 − β̂2β̂

′
2

]
fβ2

= − 1

1− τb
f ′β2V fβ2

Using these two expressions yiels (29).
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Appendix B Tables with critical values

Tables 7–8 contain critical values when the break is in the range τb = 0.15
to 0.85, where Table 7 considers post-break sample and full sample based
forecasts and Table 8 considers shrinkage forecast and full sample based
forecasts. Tables 9–10 contain the critical values when the break can be in
the range τb = 0.05 to 0.95 for the same comparisons.
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