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1 Introduction

Markov switching models have long been recognized to su↵er from a discrep-
ancy between in-sample and out-of-sample performance. In-sample analysis
of Markov switching models often leads to appealing results, for example,
the identification of business cycles. Out-of-sample performance, in con-
trast, is frequently inferior to simple benchmark models for standard loss
functions. Examples include forecasting exchange rates by Engel (1994),
Dacco and Satchell (1999) and Klaassen (2005), forecasting US GNP growth
by Clements and Krolzig (1998) and Perez-Quiros and Timmermann (2001),
forecasting US unemployment by Deschamps (2008), and forecasting house
prices by Crawford and Fratantoni (2003). Additionally, Guidolin (2011)
and Rapach and Zhou (2013) provide reviews of the use of Markov switch-
ing models in finance.

In this paper, we derive minimum mean square forecast error (MSFE)
forecasts for Markov switching models by means of optimal weighting schemes
for observations. We provide simple, analytic expressions for the weights
when the model has an arbitrary number of states and exogenous regres-
sors. We find that forecasts using optimal weights substantially increase
forecast precision and, in our application, are more precise than linear al-
ternatives. Additionally, optimal weights lead to insights that help explain
why standard Markov switching forecasts are often less precise than linear
forecasts.

We start our discussion assuming that the states of the Markov switch-
ing model are known and, in a second step, we relax this assumption. When
conditioning on the states, the intuition for the optimal weights can easily
be seen: a forecast obtained from optimal weights pools all observations and
places di↵erent weights on observations from di↵erent states. This reduces
the variance of the forecast but introduces a bias. Optimally weighting all
observations ensures that the trade-o↵ is optimal in the MSFE sense. The
usual Markov switching forecasts, in contrast, assign non-zero weights only
to observations from the state that will govern the forecast period. Con-
ditional on the states of the Markov switching model, the weights mirror
those obtained by Pesaran et al. (2013), emphasizing a correspondence with
the structural break model. The weights depend on the number of observa-
tions per regime and the relative di↵erences of the parameter between the
regimes.

In the case of three regimes, the weights have interesting properties. For
some parameter values, optimal weighting corresponds to equal weighting
of observations. For other parameter values, observations from the state
prevailing in the forecast period will not be most heavily weighted. However,
conditional on the states of the Markov switching model, the optimal weights
can be written as Op1{T q corrections to the usual Markov switching weights,
which implies that, conditional on the states, standard Markov switching
weights asymptotically achieve the minimum MSFE.
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In practice, the states of the Markov switching model are not known
with certainty. We therefore relax the assumption that the states are known
and derive weights conditional on state probabilities, which is the informa-
tion used in standard Markov switching forecasts. This results in optimal
weights that no longer correspond to those for the structural break model.
Contrasting weights conditional on states with those conditional on state
probabilities yields insights into the e↵ect that uncertainty around states
has on forecasts. Our findings explain the deterioration of forecast accuracy
of the optimal weights in the application of Pesaran et al. (2013) because
plug-in estimates of the break date substantially shrink optimal weights to-
wards equal weights. Weights conditional on states and the weights implicit
in standard Markov switching forecasts downplay the Markov switching na-
ture of the data when estimates of states are plugged in. Weights condi-
tional on state probabilities, in contrast, retain the emphasis on the Markov
switching nature of the data. This implies that the forecast accuracy from
optimal weights conditional on state probabilities relative to that implied
by standard Markov switching forecasts increases in the di↵erence between
the states in terms of their parameters and in the variance of the smoothed
probabilities. The forecast improvements from using optimal weights do not
vanish as the sample size increases as the standard weights and the opti-
mal weights conditional on the state probabilities are not asymptotically
equivalent.

We perform Monte Carlo experiments to evaluate the performance of
the optimal weights. The results confirm the theoretically expected im-
provements. The weights that are derived conditional on the states and use
the estimated probabilities as plug-in values improve over standard forecasts
only for small di↵erences in parameters, which are unlikely to lead to appli-
cations of Markov switching models in practice. The weights based on state
probabilities, in contrast, produce substantial gains for large di↵erences in
parameters between states, uncertainty over the states, and large samples.
These settings are likely to be found in many applications, including the one
in this paper.

We apply our methodology to forecasting quarterly US GNP. Out-of-
sample forecasts are constructed for 124 quarters and a range of Markov
switching models. At each point, forecasts are made with the Markov switch-
ing model that has the best forecasting history using standard weights. With
this model, we calculate forecasts based on the standard Markov switching
weights and the optimal weights developed in this paper. The results suggest
that the forecasts using optimal weights significantly outperform the stan-
dard Markov switching forecast. We also find that our forecasting schemes
lead to improved forecasts compared to a range of linear alternatives. We an-
alyze the sensitivity of the results to the choice of the out-of-sample forecast
evaluation period using the tests of Rossi and Inoue (2012), which confirm
our findings.
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The outline of the paper is as follows. Section 2 introduces the model and
the standard forecast. In Section 3 we derive the optimal weights for a simple
location model and in Section 4 for a model with exogenous regressors.
Monte Carlo experiments are presented in Section 5 and an application to
US GNP in Section 6. Finally, Section 7 concludes the paper. Additional
details are presented in a web appendix.

2 Markov switching models and their forecasts

Consider the following m-state Markov switching model

yt “ pB1
stq1

xt ` �1
st"t, "t „ iidp0, 1q (1)

where B “ p�1
1

,�1
2

, . . . ,�1
mq1 is an m ˆ k matrix, �i is a k ˆ 1 parameter

vector for i “ 1, 2, . . . ,m , xt is a k ˆ 1 vector of exogenous regressors,
� “ p�

1

,�

2

, . . . ,�mq1 are m ˆ 1 vectors of error standard deviations, and
st “ ps

1t, s2t, . . . , smtq1 is an m ˆ 1 vector of binary state indicators, such
that sit “ 1 and sjt “ 0, j ‰ i, if the process is in state i at time t.

This is the standard Markov switching model introduced by Hamilton
(1989). The model is completed by a description of the stochastic process
governing the states, where st is assumed to be an ergodic Markov chain
with transition probabilities

P “

»

———–

p

11

p

21

¨ ¨ ¨ pm1

p

12

p

22

¨ ¨ ¨ pm2

...
...

...
p

1m p

2m ¨ ¨ ¨ pmm

fi

���fl

where pij “ Ppsjt “ 1|si,t´1

“ 1q is the transition probability from state i

to state j.
The standard forecast, in this context, would be to estimate �i, i “

1, 2, . . . ,m, as

�̂i “
˜

Tÿ

t“1

⇠̂itxtx
1
t

¸´1 Tÿ

t“1

⇠̂itxtyt (2)

where ⇠̂it is the estimated probability that observation at time t is from
state i using, for example, the smoothing algorithm of Kim (1994). The
forecast is then constructed as ŷT`1

“ ∞m
i“1

⇠̂i,T`1

x

1
T`1

�̂i, where ⇠̂i,T`1

is
the predicted probability of state i in the forecast period, and xT`1

is the
vector of regressors in the forecast period, which we assume known at time T .
See Hamilton (1994) for an introduction to the Markov switching modeling
and forecasting.

In this paper, we derive the minimum MSFE forecast for finite samples
and di↵erent assumptions about the information set that the forecast is
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based on. We replace the estimated probabilities by general weights wt for
the forecast ŷT`1

“ x

1
T`1

�̂pwq, so that

�̂pwq “
˜

Tÿ

t“1

wtxtx
1
t

¸´1 Tÿ

t“1

wtxtyt

subject to the restriction
∞T

t“1

wt “ 1. The weights are restricted to sum to
one as an identifying restriction is required, and we will see in the next sec-
tion that this is the restriction of the standard Markov switching weights.
We do, however, not restrict the weights to be positive. In fact, in Sec-
tion 3.1.2 we will see that negative weights are a common feature in models
with more than two states as they allow the cancellation of biases. The
resulting forecasts are then optimal in the sense that the weights will be
chosen such that they minimize the expected MSFE.

3 Optimal forecasts for a simple model

Initially, consider a simple version of model (1) with k “ 1 and xt “ 1 such
that

yt “ �1
st ` �1

st"t, "t „ iidp0, 1q (3)

where � “ p�
1

,�

2

, . . . ,�mq1. We use this simple model for ease of exposition
but will return to the full model (1) in Section 4 below.

We can derive the optimal forecast by using a weighted average of the ob-
servations with weights that minimize the MSFE. The forecast from weighted
observations for (3) is

ŷT`1

“
Tÿ

t“1

wtyt (4)

subject to
∞T

t“1

wt “ 1.
Note, that the standard forecast can be expressed as (4) with weights

w

MS,t “
Mÿ

i“1

⇠̂i,T`1

⇠̂it∞T
t“1

⇠̂it

(5)

which only depend on the smoothed and predicted probabilities and have
the property that

∞T
t“1

w

MS,t “ 1. We will call weights (5) the standard
Markov switching weights.

In order to derive the optimal weights, consider the forecast error, which,
without loss of generality, is scaled by the error standard deviation of regime
m, is

�

´1

m eT`1

“ �

´1

m pyT`1

´ ŷT`1

q

“ �1
s̃T`1

` q

1
sT`1

"T`1

´
Tÿ

t“1

wt�
1
s̃t ´

Tÿ

t“1

wtq
1st"t
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where

� “

¨
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´ �
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,
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Tÿ

t“1

w

2

tE
“
pq1stq2

‰
` E

“
pq1

sT`1

q2
‰

“ E
`
s̃

1
T`1

��1
s̃T`1

˘
´ 2w1E

´
S̃

1��1
s̃T`1

¯

`w

1E
´
S̃

1��1
S̃

¯
w ` E

“
pq1

sT`1

q2
‰

` w

1EpQqw

“ w

1
”
EpQq ` E

´
S̃

1��1
S̃

¯ı
w ´ 2w1E

´
S̃

1��1
s̃T`1

¯
(6)

`E
`
s̃

1
T`1

��1
s̃T`1

˘
` E

“
pq1

sT`1

q2
‰

where S̃ “ ps̃
1

, s̃
2

, . . . , s̃T q, S “ ps
1

, s
2

, . . . , sT q and Q is a diagonal matrix
with typical pt, tq-element Qtt “ ∞m

i“1

q

2

i sit. The first line of (6) contains the
squared bias as the first expression on the right hand side, the variance of
the estimated parameters as the second term and, finally, the variance of the
future disturbance term. The weights will trade o↵ the first and second term
on the right hand side to minimize the MSFE. The last term, in contrast,
cannot be reduced.

Furthermore, define

M “ EpQq ` E
´
S̃

1��1
S̃

¯
(7)

and note that M is invertible as Q is a diagonal matrix with positive entries

and E
´
S̃

1��1
S̃

¯
is positive semidefinite, so that M is the sum of a posi-

tive definite matrix and a positive semi-definite matrix and therefore itself
positive definite.

Minimizing (6) subject to
∞T

t“1

wt “ 1 yields the optimal weights

w “ M

´1E
´
S̃

1��1
s̃T`1

¯
` M

´1◆

◆1
M

´1◆

”
1 ´ ◆1

M

´1E
´
S̃

1��1
s̃T`1

¯ı
(8)

where ◆ “ p1, 1, . . . , 1q1 is the unit vector of length T . We will discuss the
properties of the optimal weights in Sections 3.1 and 3.2 under di↵erent as-
sumption about the information set. The MSFE given by (6) when applying
the optimal weights (8) is

MSFEpwq “

”
1 ´ ◆1

M

´1E
´
S̃

1��1
s̃T`1

¯ı
2

◆1
M

´1◆
` E

`
s̃

1
T`1

��1
s̃T`1

˘
(9)

´E
´
S̃

1��1
s̃T`1

¯1
M

´1E
´
S̃

1��1
s̃T`1

¯
` E

“
pq1

sT`1

q2
‰
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In order to proceed, we need to specify the information set that is avail-
able to calculate the expectations in (8) and (9). Initially, we will base the
weights on the full information set of the DGP, including the state for each
observation. Clearly, this information is not available in practice. However,
the resulting analysis will prove to be highly informative. The intuition that
is gained will prove useful when interpreting the forecast that we will obtain
subsequently when allowing for uncertainty around the states. This second
step will enable us to analyze the di↵erences between the plug-in estimator
for the weights that assume knowledge of the states and optimal weights
that are derived under the assumption that the states are uncertain.

Note, that we condition on � throughout our analysis. The reason is
that, in a decomposition of the optimal weights for the structural break case,
Pesaran et al. (2013) show that the time of the break enters the weights in
a term that is of order Op1{T q, whereas the size of the break, �, enters the
weights in a term that is of order Op1{T 2q. We will show below that the
optimal weights for the Markov switching model conditional on the states
are equivalent to the weights of Pesaran et al. (2013) and their argument
therefore carries over to the Markov switching model.

3.1 Weights conditional on the states

Conditional on the states the expectation operator in (7), (8) and (9) can

be omitted such that M “ Q ` S̃

1��1
S̃ and E

´
S̃

1��1
s̃T`1

¯
“ S̃

1��1
s̃T`1

.

Given the number of states, weights can now readily be derived.

3.1.1 Two-state Markov switching models

In the case of a two-state Markov switching model, s̃ “ ps
21

, s

22

, . . . , s

2T q1

and therefore M “ Q ` �

2

s̃s̃

1 for which the inverse is given by

M

´1 “ Q

´1 ´ �

2

1 ` �

2

s̃

1
Q

´1

s̃

Q

´1

s̃s̃

1
Q

´1

“ Q

´1 ´ �

2

1 ` �

2

T⇡

2

s̃s̃

1

where �

2 “ p�2´�1q2
�2
2

and ⇡i “ 1

T

∞T
t“1

sit. The elements of the diagonal

matrix Q are Qtt “ q

2

s

1t ` s

2t with q “ �1
�2
. This yields the following

weights:
When s

1,T`1

“ 1,

wp1,1q “ 1

T

1 ` T�

2

⇡

2

⇡

2

q

2 ` ⇡

1

p1 ` T⇡

2

�

2q if s
1t “ 1 (10)

wp1,2q “ 1

T

q

2

⇡

2

q

2 ` ⇡

1

p1 ` T⇡

2

�

2q if s
2t “ 1 (11)
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where wpi,jq is the weight for an observation when sjt “ 1 while si,T`1

“ 1.
When s

2,T`1

“ 1,

wp2,1q “ 1

T

1

r⇡
2

q

2 ` ⇡

1

p1 ` T⇡

2

�

2qs if s
1t “ 1 (12)

wp2,2q “ 1

T

q

2 ` T�

2

⇡

1

r⇡
2

q

2 ` ⇡

1

p1 ` T⇡

2

�

2qs if s
2t “ 1 (13)

Note that, conditional on the state of the future observation, the weights
are symmetric under a relabeling of the states. Derivations are provided in
a web appendix.

The weights are equivalent to the weights for the break point process
developed by Pesaran et al. (2013). This implies that, conditional on the
states, a Markov switching model is equivalent to a break point model with
known break point with the exception that the observations are ordered by
the underlying Markov process.

Since the weights wp1,2q and wp2,1q are nonzero, the decrease in the vari-
ance of the optimal weights forecast should outweigh the increase in the
squared bias that results from using all observations. The expected MSFE
under the above weights is

Er�´2

2

e

2

T`1

s
opt

“
#
q

2p1 ` wp1,1qq if s
1,T`1

“ 1

1 ` wp2,2q if s
2,T`1

“ 1
(14)

while the expected MSFE for standard Markov switching weights is

Er�´2

2

e

2

T`1

s
MS

“
#
q

2

´
1 ` 1

T⇡1

¯
if s

1,T`1

“ 1

1 ` 1

T⇡2
if s

2,T`1

“ 1
(15)

It is easy to show that Er�´2

2

e

2

T`1

s
opt

† Er�´2

2

e

2

T`1

s
MS

.
Numerical examples of the magnitude of the improvement in MSFE are

presented in Table 1, which shows that the improvements scale inversely with
the di↵erences in parameters. To gain intuition for these results, consider
the case of � “ 0 and q “ 1, that is, the case where the two states have
identical means, and s

1,T`1

“ 1. The standard Markov switching model will
use weights w

MS,p1,1q “ 1

T⇡1
and w

MS,p1,2q “ 0, which results in an MSFE of

1` 1

T⇡1
. The optimal weights, in contrast, are “ w

opt,p1,1q “ w

opt,p1,2q “ 1{T ,
and the MSFE is 1 ` 1{T . The usual Markov switching forecast disregards
the information from the second state even though, in this case, it is highly
informative, whereas the optimal weights forecast uses all the observation
equally as one would suggest intuitively, given that the states have the same
mean.

As � increases the usefulness of the observations in state 2 decreases be-
cause the bias introduced by these observations increases. This is reflected
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Table 1: Ratio between the expected MSFEs of optimal and standard MS
weights

� q “ 1 q “ 0.5

⇡

2

“ 0.1 0.2 0.5 0.1 0.2 0.5

0 0.8500 0.9273 0.9808 0.8500 0.9273 0.9808
0.5 0.9294 0.9758 0.9953 0.9268 0.9745 0.9949
1 0.9727 0.9919 0.9986 0.9724 0.9918 0.9985
2 0.9921 0.9978 0.9996 0.9921 0.9978 0.9996
Note: Reported are the ratio between (14) and (15) when s2,T`1 “ 1 for

di↵erent values of �, the di↵erence in means, and q, the ratio of standard

deviations, and ⇡2, the proportion of observations in state 2. T “ 50.

in the numbers in Table 1. The same intuition can be gained by increasing
or decreasing q away from 1. The di↵erence in MSFE also depends on ⇡

1

,
that is, the fraction of observations in the state used for forecasting in the
standard Markov switching forecast. The fewer observations are available
for the standard Markov switching forecast the more valuable will the ob-
servation from the second state be. Finally, as T increases, for a fixed ⇡

1

,
the parameter estimates will be more precise so that any further gains from
using observation in the second state will be less important. In fact, we show
below that, asymptotically, the optimal weights and the standard weights
are identical. However, as we will show in Section 3.2, the asymptotic equiv-
alence of optimal and standard weights relies on the fact that the states are
known with certainty. With uncertainty around the states, the gain from
using optimal weights will not disappear with large T .

3.1.2 Three-state Markov switching models

If sj,T`1

“ 1, then define q

2

i “ �

2

i {�2

j and �

2

i “ p�i ´ �jq2{�2

j where i, j P
t1, 2, 3u. The optimal weights are

wpj,jq “ 1

T

1 ` T

∞
3

i“1

q

´2

i �

2

i⇡i∞
3

i“1

q

´2

i ⇡i ` T

∞
3

i“1

∞
3

m“1

q

´2

i q

´2

m ⇡i⇡m�mp�m ´ �iq

wpj,kq “ 1

T

q

´2

k ` Tq

´2

k

∞m
i“1

q

´2

i �i⇡ip�i ´ �kq
∞

3

i“1

q

´2

i ⇡i ` T

∞
3

i“1

∞
3

m“1

q

´2

i q

´2

m ⇡i⇡m�ip�i ´ �mq

wpj,lq “ 1

T

q

´2

l ` Tq

´2

l

∞m
i“1

q

´2

i �i⇡ip�i ´ �lq∞
3

i“1

q

´2

i ⇡i ` T

∞
3

i“1

∞
3

m“1

q

´2

i q

´2

m ⇡i⇡m�mp�i ´ �mq

(16)

where j, k, l P t1, 2, 3u. Derivations are available in the web appendix.
Figure 1 plots weights (16) for s

1,T`1

“ 1, that is, the future observation
is known to be from the first state. The di↵erence in mean between the first
and second state relative to the variance of the first state is set to �

2

“ ´2.5,
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Figure 1: Optimal weights for three state Markov switching model
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Note: The graph depicts the optimal weights (16) for a representative observation in each

state when s1,T`1 “ 1, for �2 “ ´2.5, �3 over the range ´3 to 3, T “ 100, ⇡1 “ 0.2, and

⇡2 “ ⇡3 “ 0.4. The solid line gives the weights for a representative observation where

s1t “ 1, the dash-dotted line a representative observation where s2t “ 1, and the dashed

line a representative observation for s3t “ 1.

and the di↵erence in mean between the first and third state, �
3

, varies from
´3 to 3. Furthermore, the proportions of observations for the states are
⇡

1

“ 0.2, ⇡
2

“ ⇡

3

“ 0.4, T “ 100, and the ratio of variances is q
1

“ q

2

“ 1.
Each line represents the weight for one representative observation in each
state. As 20 observations are in state 1 and 40 in the other two states, it
can easily be verified that the weights sum to one. Consider the weights
at �

3

“ ´2.5: each observation in state one is weighted with wp1,1q « 0.05
and the remaining observations with a weight close to zero. As there are
20 observations in state one, the sum of the weights equals 1. Equally, at
�

3

“ 2.5: all observations are equally weighted with a weight of 0.01. As 100
observations are in the sample, the sum of weights equals 1. The standard
Markov switching weights are independent of the parameters, w

MS,p1,1q “
0.05 and w

MS,p1,iq “ 0 for i ‰ 1, and are not included in Figure 1.
On the left of the graph, where �

3

“ ´3, the observations from state 1
receive nearly all the weight, those from state 2 receive a small positive
weight and those from state 3 a small negative weight. When �

3

“ ´2.5 the
weights for s

2t “ 1 and s

3t “ 1 are equal and close to zero. The intuition
for the equal weights is that at �

2

“ �

3

the DGP is essentially a two state
Markov switching model and the observations for the states with equal mean
receive the same weight. The large di↵erence between the mean of state 1
and that of the other states induces a potentially large bias when using
observations from the other states. As a result, the weights on observations
with s

2t “ 1 and s

3t “ 1 are very small.

10



As �

3

increases, weights for observations from state 3 increase until, at
�

3

“ 0, they are equal to those for observations with s

1t “ 1. That is, as the
third state becomes increasingly similar to the first state, the observations
are increasingly useful for forecasting. At �

3

“ 0, the first and the third state
have identical means and the observations therefore receive equal weight.
When �

3

ranges between ´2.5 and 0, the weights for the observations from
the second state are negative. The intuition is that as the observations from
the third state receive an increasingly higher weight they induce a larger
bias, which is in the same direction as the bias due to the observations from
the second state. By giving the observations from the second state negative
weights, the biases of the observations from the second and third state are
of opposite signs and can counteract each other.

As �
3

increases further and 0 † �

3

† 2.5, the observations from the third
state are weighted heavier than the observations from the first state even
though this is the future state. The reason for this at first sight surprising
result is that, in this range, the means of observations from state 2 and
state 3 have opposite signs. As the bias induced by the observations from
the second state is, in absolute terms, larger than that from the third state,
the weights on the observations from the third state receive a larger weight
to counteract this bias.

At �

3

“ 2.5 “ ´�

2

all observations receive the same weight of 1

T . At
this point, the mean of the observations with s

1t “ 1 is between and equally
distant to the means of observations with s

2t “ 1 and s

3t “ 1, which implies
that with equal weight any biases arising from using observations of the other
states cancel. In this case, the optimal weights e↵ectively ignore the Markov
switching structure of the model and forecast with equal weights, which is a
very di↵erent weighting scheme from that suggested by the Markov switching
model.

As in the two state case, when sj,T`1

“ 1 the expected MSFE using the
optimal weights is of the form

E
`
�

´2

i e

2

T`1

˘
opt

“
�

2

j

�

2

i

p1 ` wpj,jqq

with wpj,jq given in (16). For the Markov switching weights we have

E
`
�

´2

i e

2

T`1

˘
MS

“
�

2

j

�

2

i

ˆ
1 ` 1

T⇡j

˙

Figure 2 displays the ratio of MSFE of the optimal weights relative to
that of the standard MSFE forecast for T “ 100, ⇡

1

“ 0.2, ⇡
2

“ ⇡

3

“ 0.4
for a range of values for �

2

and �

3

. At �
2

“ �

3

“ ˘3 the gains from using
optimal weights are very small. In this case, the model is essentially a two
state model with a large di↵erence in mean. When �

2

and �

3

are of oppo-
site sign, the improvements are the largest. We can therefore expect most

11



Figure 2: MSFE of optimal weights relative to standard Markov switching
weights
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Note: The figure displays the ratio of the MSFE of the optimal weights relative to that

of the standard MSFE forecast for T “ 100, ⇡1 “ 0.2, ⇡2 “ ⇡3 “ 0.4 for a range of values

for �2 and �3.

gains when the observation to be forecast is in the regime with intermediate
location.

3.1.3 m-state Markov switching models

For sj,T`1

“ 1 we set �i “ �i´�j

�j
and qi “ �i

�j
, which gives for the weights

for observations with sl,t “ 1

wpj,lq “ 1

T

q

´2

l

`
1 ` T

∞m
i“1

q

´2

i �i⇡ip�i ´ �lq
˘

∞m
i“1

q

´2

i ⇡i ` T

∞m
i“1

∞m
k“1

q

´2

i q

´2

k ⇡i⇡k�ip�i ´ �kq (17)

As in the previous cases, the expected MSFE when sj,T`1

“ 1 is

E
`
�

´2

i e

2

T`1

˘
opt

“
�

2

j

�

2

i

p1 ` wpj,jqq

The derivation of the weights and the MSFE is in a web appendix. Maxi-
mizing the expected MSFE with respect to �j yields

�j “
∞m

k“1

q

´2

k ⇡k�k∞m
k“1

q

´2

k ⇡k

Hence, the largest gain occurs when the regime to be forecast is located at
the probability and variance weighted average of the other regimes. The
minimum MSFE is then

E
`
�

´2

i e

2

T`1

˘
“ 1

�

2

i

˜
�

2

j ` 1

T

1
∞m

k“1

�

´2

k ⇡k

¸

12



and when the variances are equal this reduces to

E
`
�

´2

i e

2

T`1

˘
“ 1 ` 1

T

Thus, the maximum improvement is independent of the number of states
when all variances are equal.

3.1.4 Large T approximation

Interesting results can be obtained when considering the large sample ap-
proximation of the two state weights. The optimal weight assigned to an
observation is given by

Tw “s

1,T`1

„
1 ` �

2

T⇡

2

⇡

2

q

2 ` ⇡

1

p1 ` �

2

T⇡

2

qs1t ` q

2

⇡

2

q

2 ` ⇡

1

p1 ` �

2

T⇡

2

qs2t
⇢

`s

2,T`1

„
1

⇡

2

q

2 ` ⇡

1

p1 ` �

2

T⇡

2

qs1t ` q

2 ` �

2

T⇡

1

⇡

2

q

2 ` ⇡

1

p1 ` �

2

T⇡

2

qs2t
⇢

We approximate this expression using that p1 ` ✓
T q´1 “ 1 ´ ✓

T ` OpT´2q,
where ✓ “ p⇡

2

q

2 ` ⇡

1

q{p�2

⇡

2

⇡

1

q. This yields

Tw “
ˆ

1

⇡

1

´ 1

T

q

2

�

2

⇡

2

1

˙
s

1ts1,T`1

` 1

T

q

2

�

2

⇡

1

⇡

2

s

2ts1,T`1

`

` 1

T

1

�

2

⇡

1

⇡

2

s

1ts2,T`1

`
ˆ

1

⇡

2

´ 1

T

1

�

2

⇡

2

2

˙
s

2ts2,T`1

` OpT´2q
(18)

Hence, the standard Markov switching weights are optimal up to a first order
approximation in T . It is worth noting that this is equivalent to the result
obtained by Pesaran et al. (2013) for the structural break case where the
first order approximation gives zero weight to pre-break observations and
equally weight the post-break observations. This result in (18) also suggests
that, in a Markov switching model, accurate estimation of the proportions of
the sample in each state is of first order importance, whereas the di↵erences
in means are of second order importance to obtain a minimal MSFE. This is
the motivation for considering the uncertainty around the state estimates,
which we turn to now.

3.2 Optimal weights when states are uncertain

We will now contrast the weights conditional on the states with weights
that do not assume knowledge of the states. The expectations in (8) can
be expressed in terms of the underlying Markov chain. However, it turns
out that in this case analytic expressions for the inverse of M cannot be
obtained. In Section 3.3, we will show how numerical values for the inverse
can be used to calculate numerical values for the optimal weights.
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In order to analyze the theoretical properties of the optimal weights,
analytic expressions for the weights are required, which will allow us to
contrast them with the weights that are derived conditional on the states.
Such expressions can be obtained by making the simplifying assumption that
we can condition on given state probabilities. Estimates of the probabili-
ties are available as output of the estimation of Markov switching models,
and this information is also used for the standard forecast from Markov
switching models in (2). Note that this is, in fact, more general than
the Markov switching model and can accommodate state probabilities from
other sources, such as surveys of experts or models other than those consid-
ered here.

Denote the probability of state i occurring at time t by ⇠it. The expec-
tations in (8) and (9) are then

Epsitsj,t`mq “
#
⇠it if i “ j

⇠it⇠j,t`m if i ‰ j,m • 0

We will, initially, focus on the two state case and, subsequently, on m states.

3.2.1 Two-state Markov switching models

In a two state model, we have S̃ “ s

2

“ ps
21

, s

22

, . . . , s

2T q1. The matrix M

in (8) is given by

M “ �

2⇠⇠1 ` �

2

V ` q

2

I ` p1 ´ q

2q⌅
“ �

2⇠⇠1 ` D

with ⇠ “ p⇠
21

, ⇠

22

, . . . , ⇠

2T q, ⌅ “ diagp⇠q, V “ ⌅pI ´ ⌅q, and D “ �

2

V `
q

2

I ` p1 ´ q

2q⌅ and again q “ �

1

{�
2

. The inverse of M is

M

´1 “ D

´1 ´ �

2

1 ` �

2⇠1
D

´1⇠
D

´1⇠⇠1
D

´1 (19)

Using (8) and (19) yields

w “ �

2

⇠

2,T`1

M

´1⇠ ` M

´1◆

◆1
M

´1◆

`
1 ´ �

2

⇠

2,T`1

◆1
M

´1⇠
˘

(20)

Denote the typical pt, tq-element of D´1 by dt, where

dt “
“
�

2

⇠

2,tp1 ´ ⇠

2,tq ` q

2 ` p1 ´ q

2q⇠
2,t

‰´1

Then, the weight for the observation at time t is given by

wt “
dt

”
1 ` �

2

∞T
t1“1

dt1p⇠
2t ´ ⇠

2t1qp⇠
2,T`1

´ ⇠

2t1q
ı

∞T
t1“1

dt1 ` �

2

„´∞T
t1“1

dt1
⇠

2

2t1

¯ ´∞T
t1“1

dt1
¯

´
´∞T

t1“1

dt1
⇠

2t1
¯
2

⇢ (21)
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The expected MSFE can be calculated from (6) and reduces to

Ep�´2

2

e

2

T`1

q “
“
1 ` �

2

⇠

2,T`1

p1 ´ ⇠

2,T`1

q
‰

p1 ` wT`1

q (22)

where wT`1

is given by (21).
When T is large, weights (21) can be written as

wt “ d̃t

∞T
t1“1

d̃t1 p⇠
2,T`1

´ ⇠

2t1q p⇠
2t ´ ⇠

2t1q
∞T

t1“1

d̃t1
´
⇠

2t1 ´ ∞T
t2“1

d̃t2
⇠

2t2
¯
2

` OpT´2q (23)

where d̃t “ dt{p∞T
t1“1

dtq. Derivations are provided in a web appendix. While
the weights in (21) and (23) provide closed form solutions, interpretation can
be aided by momentarily making the simplifying assumption of constant
state variances.

Constant state variance The interpretation of (21) and (23) is compli-
cated by the fact that ⇠

2t is a continuous variable in the range r0, 1s – as
opposed to the binary variable s

2t for the weights conditional on states – so
that an infinite number of possible combinations of ⇠

2t over t is possible. In
order to simplify the interpretation of the weights, we will therefore, for a
moment, assume that the variance of the states is constant and denoted as
�

2

s “ ⇠

2tp1 ´ ⇠

2tq.
Summing �

2

s over t and solving for �2

s yields

�

2

s “ ⇠̄

1

⇠̄

2

´ 1

T

ÿ

t

p⇠
2t ´ ⇠̄

2

q2 (24)

where ⇠̄

1

“ 1

T

∞T
t“1

⇠

1t and ⇠̄

2

“ 1

T

∞T
t“1

⇠

2t. Note that the maximum value
of �2

s is given by ⇠̄

2

⇠̄

1

, which occurs when the probability vector is constant.
In the case of a constant �2

s , d̃t simplifies to 1{T . Hence, (21) can be written
as

wt “ 1

T

„
1 ` �

2

p⇠
2,T`1

´ ⇠̄

2

qp⇠
2t ´ ⇠̄

2

q
pT d̄q´1 ` �

2p⇠̄
1

⇠̄

2

´ �

2

sq

⇢

and the large T approximation (23) as

wt “ 1

T

` p⇠
2,T`1

´ ⇠̄

2

qp⇠
2t ´ ⇠̄

2

q
T p⇠̄

1

⇠̄

2

´ �

2

sq (25)

The standard Markov switching weights can be expressed as

w

MS,t “ 1

T

` p⇠
2,T`1

´ ⇠̄

2

qp⇠
2t ´ ⇠̄

2

q
T ⇠̄

1

⇠̄

2

(26)

see the web appendix. From a comparison of (25) and (26) it is clear that
the two weights di↵er by the factor �

2

s in the denominator and that this

15



di↵erence will not disappear asymptotically. E↵ectively, the Markov switch-
ing weights are more conservative as the optimal weights exploit the regime
switching structure more strongly because of the smaller denominator in
(25) compared to (26).

The MSFE for the optimal weights and for the standard Markov switch-
ing weights under constant state variance are

E
`
�

´2

2

e

2

T`1

˘
opt

“
“
1 ` �

2

⇠

2,T`1

p1 ´ ⇠

2,T`1

q
‰

ˆ
ˆ
1 ` 1

T

` �

2p⇠
2,T`1

´ ⇠̄

2

q2
1 ` �

2

�

2

s ` �

2

T p⇠̄
2

p1 ´ ⇠̄

2

q ´ �

2

sq

˙
(27)

E
`
�

´2

2

e

2

T`1

˘
MS

“ 1 ` �

2

⇠

2,T`1

p1 ´ ⇠

2,T`1

q ` 1

T

p�2

�

2

s ` 1q (28)

`
ˆ
⇠

2,T`1

´ ⇠̄

2

⇠̄

2

p1 ´ ⇠̄

2

q

˙
2

„
1

T

p⇠̄
2

p1 ´ ⇠̄

2

q ´ �

2

sq
`
�

2

�

2

s ` 1
˘

` �

2

�

4

s

⇢

The MSFE for the optimal weights is derived from (22) by substituting
in the weights in (21) and using the fact that d̃t “ 1{T and dt “ d, for
t “ 1, 2, . . . , T ` 1, which together with the MSFE for the standard Markov
switching weights is derived in a web appendix.

Table 2 displays the improvements in forecast performance expressed as
the ratio of (27) over (28) for di↵erent values of ⇠̄

2

, �̃2

s “ �

2

s{p⇠̄
2

⇠̄

1

q and � for
T “ 100. The results indicate that the optimal weights lead to larger gains
when � is large and when ⇠̄

2

is closer to 0.5. The influence of �2

s is U-shaped
with the largest improvement when �

2

s “ 0.6. The results in Table 2 show
that the improvement can be as large as 11.3% for the range of parameter
values considered here.

In this simplified framework, the increase in forecast accuracy does not
disappear when the sample size increases. The asymptotic approximation
to the MSFE under optimal weights is given by

E
`
�

2

0

e

2

T`1

˘
opt

“ 1 ` �

2

⇠

2,T`1

p1 ´ ⇠

2,T`1

q ` OpT´1q (29)

and that under standard Markov switching weights is

E
`
�

2

0

e

2

T`1

˘
MS

“ 1 ` �

2

⇠

2,T`1

p1 ´ ⇠

2,T`1

q `
ˆ
⇠

2,T`1

´ ⇠̄

2

⇠̄

2

⇠̄

1

˙
2

�

2

�

4

s ` OpT´1q
(30)

The di↵erence between (30) and (29) is positive and does not disappear
asymptotically. The relative improvement is expected to be high when �,
�

2

s , and the di↵erence ⇠

2,T`1

´ ⇠̄

2

are large.

3.2.2 m-state Markov switching models

The derivations can be extended to an arbitrary number of states. Note
that M “ EpQq ` EpS̃1��1

S̃q and EpS̃1��1
S̃q “ EpS̃q1��1EpS̃q ` A where,
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Table 2: Maximum improvements in a two state model with T “ 100

⇠̄

2

�̃

2

s 0.1 0.2 0.3 0.4 0.5

� “ 2 0 1.000 1.000 1.000 1.000 1.000
0.2 0.993 0.986 0.981 0.979 0.978
0.4 0.977 0.960 0.950 0.944 0.942
0.6 0.967 0.946 0.934 0.927 0.926
0.8 0.974 0.957 0.948 0.944 0.942

� “ 3 0 1.000 1.000 1.000 1.000 1.000
0.2 0.982 0.969 0.962 0.958 0.957
0.4 0.951 0.926 0.913 0.907 0.905
0.6 0.935 0.908 0.895 0.889 0.887
0.8 0.949 0.930 0.921 0.917 0.916

Note: The table reports the ratio of the MSFE of the optimal
weights to that of the Markov switching weights conditional
on a constant state variance �2

s . � “ p�2 ´�1q{� denotes the
scaled di↵erence between means, ⇠̄2 the average probability
for state 2, and �̃2

s is a negative function of the variance of
the state 2 probability.

conditional on the state probabilities, ⇠jt, j “ 1, 2, . . . ,m,

A “
mÿ

j“2

�

2

j⌅j ´
˜

mÿ

j“2

�j⌅j

¸
2

and ⌅j is a T ˆ T diagonal matrix with typical element ⇠jt. Define ⇠̃ “
EpS̃q1�, which is a T ˆ 1 vector, and D “ EpQq ` A. Then,

M

´1 “ D

´1 ´ 1

1 ` ⇠̃D´1⇠̃
D

´1⇠̃⇠̃
1
D

´1

We can use (8) to derive the weights similar to the case of the two-state
weights

wt “
d

pmq
t

!
1 `

”∞T
t1“1

d

pmq
t1 p⇠̃t ´ ⇠̃t1qp⇠̃T`1

´ ⇠̃t1q
ı)

∞T
t1“1

d

pmq
t1 `

´∞T
t1“1

d

pmq
t1 ⇠̃

2

t1

¯ ´∞T
t1“1

d

pmq
t1

¯
´

´∞T
t1“1

d

pmq
t1 ⇠̃t1

¯
2

(31)
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Figure 3: Optimal weights for a three state Markov switching model
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Note: In both plots, the lighter, gray lines depict optimal weights (16), which are con-

ditional on the states, for a representative observation in each state. In the left plot,

the darker lines are the optimal weights (16) for a representative observation in each

state where the probabilities are used as plug-in values for the states. In the right plot,

the darker lines are the weights (31) that are derived conditional on the states under

state probabilities ⇠̂T`1 “ r0.8, 0.1, 0.1s1 for �2 “ ´2.5, �3 over the range ´3 to 3,

T “ 100, ⇡1 “ 0.2, and ⇡2 “ ⇡3 “ 0.4. The dark, solid line gives the weights when

⇠̂t “ r0.8, 0.1, 0.1s1, the dark, dash-dotted line when ⇠̂t “ r0.1, 0.8, 0.1s1, and the dark,

dashed line when ⇠̂t “ r0.1, 0.1, 0.8s1.

where

d

pmq
t “

»

–
mÿ

j“1

q

2

j ⇠jt `
mÿ

j“2

�

2

j⇠jt ´
˜

mÿ

j“2

�j⇠jt

¸
2

fi

fl
´1

“
»

–
mÿ

j“1

pq2j ` �

2

j q⇠jt ´
˜

mÿ

j“2

�j⇠jt

¸
2

fi

fl
´1

⇠̃t “
mÿ

j“2

⇠jt�j

given that �
1

“ 0.
Examples of weights for a three state Markov switching model when

states are uncertain are plotted in Figure 3. Again, the di↵erence in mean
between the first and second state relative to the variance of the first state is
set to �

2

“ ´2.5, and the di↵erence in mean between the first and third state,
�

3

, varies from ´3 to 3. Furthermore, ⇡
1

“ 0.2, ⇡
2

“ ⇡

3

“ 0.4, T “ 100, and
the ratio of variances is q

1

“ q

2

“ 1. For simplicity of exposition, we assume
that the state probabilities are identical for each state in the sense that a
prevailing state is given probability ⇠it “ 0.8 and other states ⇠jt “ 0.1. The
light gray lines represent the optimal weights (16) that are conditional on the
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Figure 4: MSFE of optimal weights relative to standard weights when states
are uncertain
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Note: The figure displays the ratio of the MSFE of the optimal weights relative to that

of the standard MSFE forecast. For details of the parameter settings see the footnote of

Figure 3.

states. The graph on the left plots weights (16) substituting the probabilities
⇠it for the states sit, that is, the plug-in estimator of the weights as the black
lines. The graph on the right plots the weights (31) as the black lines.

The graph on the left shows how the introduction of the probabilities
brings the weights closer to equal weighting compared to the weights for
known states. This contrasts with the weights that explicitly take the un-
certainty around the states into account. In the plot on the right these
weights are very close to the weights conditional on the states. Hence, using
the uncertainty of the states in the derivation of the weights leads to weights
that are similar to when the states are known.

An additional di↵erence arises for positive �

3

, where the weights con-
ditional on state probabilities for the future state increase over those con-
ditional on states. The reason is that for �

2

and �

3

of opposite sign, the
variance of ◆1⇠̃ increases relative to the case of �’s of equal sign, which a↵ects

d

pmq
t in (31). Hence, the increase of uncertainty about the states leads to an

increased reliance on the data that are likely from same state as the future
observation.

The relative MSFE of optimal relative to standard weights is displayed
in Figure 4. When �

2

and �

3

are large and of similar magnitude, optimal
weights have a much smaller MSFE as the standard weights are compressed
due to the uncertainty around the states. When �

2

and �

3

are of opposite
signs, the gain is smaller as the compression of the standard weights brings
them closer to the optimal weights, which for �

2

“ ´�

3

are equal weights.
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3.3 Estimating state covariances from the data

Above, we derived weights conditional on the state probabilities, in which
case we can write the expectation of the product of two states as Epsitsj,t`mq “
⇠it⇠j,t`m. While this assumption allows us to find an explicit inverse of the
matrix M and to obtain analytic expressions for the weights, it does not
use the Markov switching nature of the DGP. If one is willing to forgo the
convenience of explicit expressions for the weights, it is possible to estimate
M̂ directly from the data.

To estimate M̂ directly from the data, we now condition on the infor-
mation set up to time T , denoted ⌦T . Then Epsitsj,t`m|⌦T q “ ppsj,t`m “
1|⌦T qppsit “ 1|sj,t`m “ 1,⌦T q. The first term is the smoothed probability
of being in state j at time t ` m as given by an EM-algorithm Hamilton
(1994) or a MCMC sampler Kim and Nelson (1999). The second term can
be written as

ppsit “ 1|sj,t`m “ 1,⌦T q “
⇠

i
t|t

⇠

j
t`m|t`m´1

«˜
m´1π

l“1

P

1
At`l

¸
P

1
�

i,j

(32)

where At is a m ˆ m diagonal matrix with typical i, i-element ⇠it|t{⇠it|t´1

,
and ⇠it|t and ⇠it|t´1

denote the filtered and forecast probabilities of state i at
time t. The derivation of (32) can be found the web appendix. Using these
expressions we can calculate the expectations in (8). Define

⌅

˚ “
«˜

k´1π

l“1

P

1
At`l

¸
P

1
�

2:m,2:m

Then we can write m ´ 1 ˆ m ´ 1 matrix of expectations

E
`
s̃ts̃

1
t`k

ˇ̌
⌦T

˘
“ ⌅t|t⌅

˚ `
⌅t`k|T ˜ ⌅t`k|t`k´1

˘

where ⌅t|t is an m ´ 1 ˆ m ´ 1 matrix with typical i, i element ⇠̂it|t is, and
˜ denotes element-by-element division. Recall M “ EpQq ` EpS̃1��1

S̃q. A
typical element of the second matrix is given by

E
´
S̃

1��1
S̃

ˇ̌
ˇ⌦T

¯

t,t
“ �1diag rE p s̃t|⌦T qs�

E
´
S̃

1��1
S̃

ˇ̌
ˇ⌦T

¯

t,t`k
“ �1E

`
s̃ts̃

1
t`k

ˇ̌
⌦T

˘
�

(33)

Using (33) in (8) yields numerical solutions for the weights.

4 Markov switching models with exogenous re-
gressors

So far, we have considered models that only contain a constant as the re-
gressor. Now, we return to the model with regressors in (1). Rewrite this
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model as

y “
mÿ

i“1

SipX�i ` �i"q

“ X�
1

`
mÿ

i“1

SiXp�i ´ �
1

q `
mÿ

i“1

Si�i"

where Si is a T ˆ T matrix with as its j-th diagonal element equal to one
if observation j belongs to state i and zero elsewhere, X a T ˆ k matrix of
exogenous regressors and �i a k ˆ 1 vector of parameters, �i the variance of
regime i, and we used the fact that

∞m
i“1

Si “ I. Also,

yT`1

“ x

1
T`1

�
1

`
mÿ

i“2

si,T`1

x

1
T`1

p�i ´ �
1

q `
mÿ

i“1

si,T`1

�i"T`1

As before, we define the optimally weighted estimator as follows

�pwq “ pX1
WXq´1

X

1
Wy

The optimal forecast is then given by ŷT`1

“ x

1
T`1

�pwq.
Define �i “ p�i ´ �

1

q{�m, qi “ �i{�m and ⇤ij “ �i�
1
j . As in the

case of structural breaks analyzed by Pesaran et al. (2013), large sample
approximations to the MSFE are necessary to obtain analytical expressions
for the weights. We make the following approximations: plimTÑ8 X

1
WX “

⌦XX , plimTÑ8 X

1
SiWX “ ⌦XXw

1
si, plimTÑ8 X

1
W

2

SiX “ ⌦XXw

1
Siw.

Then, MSFE is

E
`
�

´2

m e

2

T`1

˘
“

mÿ

i“1

Epsi,T`1

qx1
T`1

⇤ijxT`1

`
mÿ

i“1

Epsi,T`1

qq2i "2T`1

`
mÿ

i“1

mÿ

j“1

w

1Epsis1
jqw⇤ijxT`1

` x

1
T`1

⌦

´1

XX

mÿ

i“1

q

2

iw
1EpSiqwxT`1

´ 2x1
T`1

mÿ

i“1

mÿ

j“1

w

1Epsisj,T`1

q⇤ijxT`1

Maximizing (4) subject to ◆1
w “ 1 leads to the following optimal weights

w “ M

´1E
´
S̃

1��1
s̃T`1

¯
` M

´1◆

◆1
M

´1◆

”
1 ´ ◆1

M

´1E
´
S̃

1��1
s̃T`1

¯ı
(34)

where �i “ x

1
T`1

�i{pxT`1

⌦

´1

XXxT`1

q1{2, M “ EpQq ` E
´
S̃

1��1
S̃

¯
and Q

a diagonal matrix with typical pt, tq-element Qtt “ ∞m
i“1

q

2

i sit. The results
derived for the location model above can, therefore, be straightforwardly
extended to allow for exogenous regressors by replacing � with �.
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5 Evidence from Monte Carlo experiments

5.1 Set up of the experiments

We analyze the forecast performance of the optimal weights in a series of
Monte Carlo experiments. Data are generated according to (1) and we
consider models with with m “ 2 and m “ 3 states. We set �2

2

“ 0.25 and
use a range of values for �i and q

2.
The states are generated by a Markov chain with transition probabilities

pij “ 1

T⇡i
, for i ‰ j, and ergodic probabilities ⇡i “ ⇡ “ 1{m, @i , where m

is the number of states. The diagonal elements of the transition probability
matrix are pii “ 1´∞m

j“1

pij . This creates Markov chains with relatively high
persistence. The first state is sampled from the ergodic probability vector,
s

1

„ Binomialp1,⇡q and subsequent states are drawn as st „ Binomialp1,ptq
where pt “ Pst´1

. We restrict attention to draws of the data that would
be identified as Markov switching models in an application: we require that
each regime has at least 10 observations and that regimes are identified
empirically in that

∞T
t“1

⇠̂

i
t|T • 5, @i, which ensures identification of the

parameters. The estimation uses the EM algorithm (Dempster et al. 1977)
as outlined by Hamilton (1994).

The first set of the Monte Carlo experiments analyzes two state models
with a constant only, that is, k “ 1 and xt “ 1 for T “ 200. A second
set of experiments considers three state models for T “ 200. We also ran
experiments for a two-state model with an exogenous regressor. The results
do not substantially di↵er from the results of the mean only model and can
be found in the web appendix.

Given the parameter estimates �̂i, P̂, �̂i and the probability vectors with
⇠̂t|T , ⇠̂t|t, ⇠̂t|t´1

we construct the usual Markov switching forecast as

ŷ

MS

T`1

“ x

1
T`1

mÿ

i“1

�̂i⇠̂
i
T`1|T

where �̂i is given in (2).
The optimal weights are calculated as outlined in the sections above.

The following notation is used to distinguish the di↵erent weights:

• wŝ: weights based on known states, operationalized by substituting
the smoothed probability vector ⇠̂t|T for the states as discussed in
Section 3.1.

• w

ˆ⇠: weights derived based on state probabilities, with the smoothed

probability vector ⇠̂t|T as the probabilities as discussed in Section 3.2.

• w

ˆM: the weights based on state probabilities derived by directly esti-

mating the matrix M̂ as detailed in Section 3.3.
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Using these weights, the optimal forecast is constructed as

ŷ

opt

T`1

“ x

1
T`1

`
X

1
WX

˘´1

X

1
Wy

where W is a diagonal matrix with typical diagonal element wŝ,t, wˆ⇠,t, or
w

ˆM,t.
We report ratios of the MSFE of optimally weighted forecasts to that of

standard Markov switching forecasts. Additionally, we separated the results
by the size of the regime di↵erence, �i. Finally, we have seen above that
the performance of the weights w

ˆ⇠ depends on the variance of the smoothed
probability vector. Thus, we separate the results based on the normalized
variance of the smoothed probability vector

�̃

2

ˆ⇠
“

1

T

∞T
t“1

⇠̂

piq
t|T p1 ´ ⇠̂

piq
t|T q

1

T

∞T
t“1

⇠̂

piq
t|T

1

T

∞T
t“1

p1 ´ ⇠̂

piq
t|T q

(35)

where i the state which has the minimum normalized variance. Note that in
the case of two states for 1

T

∞T
t“1

⇠̂

piq
t|T “ 1

T

∞T
t“1

p1´ ⇠̂

piq
t|T q “ 0.5, the measure

�̃

2

ˆ⇠
is analogous to the regime classification measure (RCM) of Ang and

Bekaert (2002). The Monte Carlo results are from 10,000 replications.

5.2 Monte Carlo results

The Monte Carlo results for the two-state model are reported in Table 3,
where results for models with switches in mean and homoskedastic errors are
in the left panel. The results in Section 3.1 suggest that forecasts from opti-
mal weights conditional on states, wŝ, will show the largest gains when the
di↵erence between regimes, �, is small. In contrast, the results in Section 3.2
suggest that the gains for the forecasts from optimal weights conditional on
state probabilities, w

ˆ⇠ and w

ˆM, will be largest for large �, which is the
practically more relevant case.

The results from the simulation confirm the theoretical findings. For
small �, the forecasts from weights, wŝ, are more precise than those using
standard weights and weights conditional on state probabilities. An ad-
ditional e↵ect that improves the forecasts using wŝ is that the parameter
estimates are biased upwards when � “ 1. In Section 3.1.2, we show that
the weights wŝ are shrunk towards equal weights. The upwards bias of �̂
will return the weights closer to the infeasible optimal weights based on the
true DGP. The estimated weights conditional on state probabilities are close
to the infeasible optimal weights in the absence of a bias, and the bias in �̂

will increase them beyond the infeasible optimal weights. The case of � “ 1
may, however, not be recognized in a given time series as the switches are
as large as the disturbance standard deviation. This setting is, therefore, of
lesser practical relevance than those with larger �.
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Table 3: Monte Carlo results: two states, mean only models

q

2 “ 1 q

2 “ 2

� �̃

2

ˆ⇠|T
wŝ w

ˆ⇠ w

ˆM wŝ w

ˆ⇠ w

ˆM

1 0.0-0.1 0.997 1.004 1.008 0.998 1.002 1.002
0.1-0.2 1.000 1.007 1.023 1.000 1.004 1.012
0.2-0.3 1.000 1.009 1.027 1.000 1.010 1.023
0.3-0.4 1.001 1.009 1.030 1.001 1.008 1.022

2 0.0-0.1 1.000 1.000 1.024 1.000 1.001 1.018
0.1-0.2 1.002 0.989 1.024 1.001 0.997 1.034
0.2-0.3 1.003 0.966 0.998 1.003 0.984 1.011
0.3-0.4 1.004 0.940 0.967 1.002 0.983 1.004

3 0.0-0.1 1.000 0.999 1.025 1.000 0.999 1.027
0.1-0.2 1.004 0.959 0.990 1.003 0.975 1.013
0.2-0.3 1.005 0.903 0.953 1.005 0.950 0.988
0.3-0.4 1.003 0.845 0.921 1.006 0.889 0.918

Note: The table reports the ratio of the MSFE of the optimal
weights to that of the Markov switching weights. yt “ �1s1t `
�2s2t`p�1s1t`�2s2tq"t where "t „ Np0, 1q, �2

2 “ 0.25, q2 “ �

2
1{�2

2 .
Column labels: � “ p�2 ´ �1q{�2, �̃2

⇠̂|T
is the normalized variance

in of the smoothed probability vector (35). wŝ: forecasts from
weights based on estimated parameters and state probabilities. w⇠̂:
forecasts from weights conditional on state probabilities. wM̂ are

the weights based on numerically inverting M̂. The sample size is
T “ 200 and the results are from R “ 10000 repetitions.

For larger � the ordering is reversed: the forecasts from optimal weights
conditional on states, wŝ, are less precise than those of the standard weights.
In contrast, the weights conditional on state probabilities, w

ˆ⇠ and w

ˆM, are
substantially more precise. The reason is that in this settings there is a
smaller, at times even downwards, bias in �̂ and the shrinking of the weights
wŝ towards equal weights deteriorates the forecasts, whereas the weights
conditional on the states benefit from the fact that the weights are close to
the infeasible optimal weights.

The theoretical results in Section 3.2 suggest that the relative perfor-
mance of the weights based on state probabilities, w

ˆ⇠ and w

ˆM, will increase
in the uncertainty around the states. This is because the standard weights
and the plug-in weights, wŝ, are compressed towards equal weights whereas
the optimal weights retain the shape of the weights as if the states where
known. Again, the results in Table 3 confirm the finding: the results for
weights wŝ are worse when the states are uncertain, the forecasts from the

24



Table 4: Monte Carlo results: three states,
intercept only models

t�
31

,�

21

u �̃

2

ˆ⇠|T
wŝ w

ˆ⇠ w

ˆM

{2,1} 0.0-0.1 0.999 1.014 1.027
0.1-0.2 1.000 1.010 1.024
0.2-0.3 1.001 1.007 1.031
0.3-0.4 1.001 0.999 1.019

{3,1} 0.0-0.1 1.000 1.004 1.025
0.1-0.2 1.001 0.989 1.019
0.2-0.3 1.002 0.958 0.969
0.3-0.4 1.002 0.938 0.952

{3.5,2} 0.0-0.1 1.000 1.001 1.024
0.1-0.2 1.001 0.983 1.021
0.2-0.3 1.002 0.954 0.960
0.3-0.4 1.003 0.902 0.918

Note: The table reports the ratio of the MSFE
of the optimal weights to that of the Markov
switching weights for q

2 “ 1. For details see
Table 3.

weights conditional on state probabilities improve substantially and lead to
large gains. Our application will highlight the practical relevance of large �

and state uncertainty, so that we can expect large gains when using w

ˆ⇠ and
w

ˆM in practice.
The sample size is the final factor that influences the performance of

the forecasts, where weights w
ˆ⇠ and w

ˆM improve with the sample size while
weights, wŝ, deteriorate in the samples size. However, this a↵ect is relevant
only for small T such as T “ 50, which are unlikely to be relevant in practice.
Results for T “ 50 and 100 can be found in the web appendix.

The right panel of Table 3 reports the results for a model with state
dependent mean and variance, where the variance in regime 2 is the same
as before but the variance in regime 1 is doubled. This should mute the
improvements since the average di↵erence in regimes standardized by the
variance decreases. While this decrease is indeed observed, substantial im-
provements remain in the same parameter regions where the weights under
constant variance perform well.

Finally, we investigate forecasts from three state models. The results in
Table 4 suggest that the conclusions from two state models carry over to
three state models. Sizable improvements are made when using w

ˆ⇠ and w

ˆM

when �̃

2

ˆ⇠
is large and both di↵erences in parameters, �

21

and �

31

, are large.
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Overall, the findings from the Monte Carlo experiments suggest that
optimal weights conditional on states, wŝ, work well only for small di↵erences
in regimes and when states are estimated with great certainty, which are,
arguably, less realistic assumptions in practice. In contrast, optimal weights
conditional on state probabilities improve forecasts over standard weights
when di↵erences in regimes and uncertainty around states are large, which
is the setting most likely found in applications, such as that in Section 6.
Using weights that treat states as independent binary variables, w

ˆ⇠, avoids
the estimation uncertainty around covariances of the state, and in many
settings leads to the most precise forecasts. Estimating the full matrix of
second moments, M, in the construction of the optimal weights, w

ˆM, can,
however, improve forecasts when the di↵erence between regimes is large
while the uncertainty about regimes remains large, too.

6 Application to US GNP

The US business cycle, which was analyzed by Hamilton (1989), arguably
remains one of the most prominent application of Markov switching models.
Di↵erent variants of such models have been used to model US GNP growth,
see, for example, Clements and Krolzig (1998) and Krolzig (1997, 2000).
These authors also show that the Markov switching model is frequently
outperformed in terms of MSFE by AR models. We use a pseudo-out-of-
sample forecast exercise to investigate whether optimal weights improve the
forecast accuracy of Markov switching models for US GNP growth, and
whether optimal weights improve the forecast accuracy of Markov switching
models over that of linear alternatives.

The model by Hamilton (1989) is an example of a Markov Switching
in mean model with non-switching autoregressive regressors. This class of
models

yt “ �st `
pÿ

i“1

�ipyt´i ´ �st´iq ` �"t

is denoted as MSM(m)-ARpp) by Krolzig (1997), where Hamilton’s model
takes m “ 2 and p “ 4. Here, yt depends on the current state and on
the previous p states. If, in addition, the model contains a state dependent
variance, �st , it is denoted as MSMH(m)-AR(p).

Clements and Krolzig (1998) find that a three state model with switching
intercept instead of switching mean and a state dependent variance does well
in terms of business cycle description and forecast performance. This class
of models

yt “ �st `
pÿ

i“1

�iyt´i ` �st"t

is denoted as MSIH(m)-AR(p) by Krolzig (1997) and the model in Clements
and Krolzig (1998) takes m “ 3 and p “ 4.
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Note that, for both models, we can use the optimal weights of the in-
tercept only model because, conditional on the estimated parameters, the
state-independent autoregressive component can be moved to the left hand
side. On the right hand side, only the constant remains and we can use the
optimal weights of the intercept only model. We estimate the models using
the EM algorithm suggested by Hamilton (1994) with the extensions dis-
cussed by Krolzig (1997). We have investigated the performance of optimal
weights for such dynamic models in Monte Carlo experiments with details
provided in a web appendix. The results indicate that the insights gained
from the intercept only model in Section 5 carry over to dynamic models.

In this exercise, we focus on pseudo-out-of-sample forecasts generated
by a range of candidate Markov switching models: MSM(m)-AR(p) and
MSMH(m)-AR(p) models with m “ 2 and p “ 0, 1, 2, 3, 4 and m “ 3 with
p “ 1, 2, and MSI (m)-AR(p) and MSIH(m)-AR(p) models with m “ 2, 3
and p “ 0, 1, 2, 3, 4. We construct expanding window forecasts where for
each forecast all models are re-estimated to include all available data at
that point in time. We select the Markov switching model that, based
on standard weights, delivers the lowest MSFE in a cross-validation sample.
Using this model, we then compare the pseudo out-of-sample forecasts using
standard weights and optimal weights.

We report the ratio of the MSFE of forecasts from optimal weights rela-
tive to those from standard weights together with the Diebold and Mariano
(1995) test statistic of equal predictive accuracy. Additionally, we calculate
the components of MSFE: the squared biases and variances. We report the
di↵erences between the squared bias of the standard weights forecasts and
that of the optimal weight forecasts relative to the MSFE of the standard
weight forecast, and the di↵erences between the variance of the standard
weights forecasts and that of the optimal weight forecasts relative to the
MSFE of the standard weight forecast.

The data are (log changes in) US GNP series from 1947Q1 to 2014Q1,
which we obtained from the Federal Reserve Economic Data (FRED). The
data are seasonally adjusted. In total, the series consists of 269 observations.
After accounting for the necessary pre-sample, we start the estimation sam-
ple in 1948Q2.

The out-of-sample forecast period is 1983Q2-2014Q1, which amounts to
124 observations and ensures that throughout the forecasting exercise all
models are estimated on at least 100 observations. We start evaluating fore-
casts for model selection purposes with a training period 1973Q2-1983Q1
(40 observations). The model that has the minimum MSFE over this pe-
riod (using standard weights) is selected as the forecasting model for the
observation 1983Q2, and forecasts using the di↵erent weights are made with
this model. In this way, no information is used that is not available to re-
searchers in real time. Next, we add the next period to our estimation and
cross-validation sample, select the minimumMSFE model, and construct the
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Table 5: GNP forecasts: forecasting performance

w

MS

wŝ w

ˆ⇠ w

ˆM

1983Q2-2014Q1 0.367 1.001 0.970˚˚ 0.959˚˚˚

Subperiods

1983Q2-1993Q1 0.225 1.002 0.875˚˚ 0.898˚

1993Q2-2003Q1 0.306 1.000 1.021 0.989
2003Q2-2014Q1 0.553 1.000 0.980˚ 0.965˚˚

Full sample: 1983Q2-2014Q1

Square bias 0.008 0.000 0.003 0.005
Variance 0.359 ´0.001 0.028 0.037

Note: The second column in the top two panels of the table
reports the MSFE based on the best Markov switching model
with standard weights. The remaining columns of the table re-
ports the relative MSFE of the optimal weights compared with
the Markov switching weights. Asterisks denote significance at
the 10% (*), 5% (**), and 1% (***) level using the Diebold-
Mariano test statistic. The second column of the last panel
reports the square bias and variance of the best Markov switch-
ing model with standard weights. The remaining columns give
the di↵erences in squared biases and variances between the
standard weights and optimal weights forecasts relative to the
MSFE of the Markov switching model with standard weights.
Positive numbers indicate lower bias/variance.

next forecast. Remarkably, in our application, the MSM(3)-AR(1) model is
selected throughout.

As mentioned above, the beginning of the out-of-sample forecast period is
chosen such that a su�cient amount of observations is available to estimate
all Markov switching models. Still, we need to ensure that our results do
not critically depend on this choice. In a second step, we therefore check the
robustness of our results using the forecast evaluation measures proposed by
Rossi and Inoue (2012).

The forecasting performances of the standard and optimal weights are
reported in Table 5. The column with heading w

MS

reports the MSFE of
the best Markov switching model using standard weights. The next three
columns report the ratio of MSFE of the optimal weights forecast to the
standard weights forecast for the same model. The results in the first line,
which are over the full forecast period, show that optimal weights condi-
tional on states, wŝ, do not improve forecasts but that, in contrast, weights
conditional on state probabilities, w

ˆ⇠ and w

ˆM, substantially improve the
forecast performance over standard weights and that these improvements
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are significant. The most precise forecasts result from using w

ˆM. The three
state models have an average estimated di↵erences in mean (scaled by the
standard deviation) �̂

21

“ 2.28 and �̂

31

“ 4.23. The average minimum nor-
malized variance of the smoothed probability vector is �̃

2

ˆ⇠|T
“ 0.20. The

size of the improvements over the Markov switching forecast is close to the
improvements found in the Monte Carlo simulation for three state models
as presented in Table 4.

It is interesting to also compare forecast performance in subsamples. In
the first subsample, 1983Q2–1993Q1, forecasts based on the optimal weights
conditional on state probabilities, w

ˆ⇠ and w

ˆM, improve significantly over

the standard weights with gains of more than 10% in forecast accuracy.
Forecasts based on the plug-in weights, wŝ, in contrast, cannot improve on
the standard MS forecasts. In the second subsample, 1993Q2–2003Q1, which
largely covers the great moderation, only w

ˆM o↵ers a modest improvement.
In the last subsample, 2003Q2–2014Q1, again all optimal weights conditional
on the state probabilities lead to more precise forecasts than the standard
weights and these improvements are again significant.

The optimal weights trade o↵ bias and variance of the forecasts, and
it is therefore interesting to consider the magnitude of the bias incurred.
The bottom panel of Table 5 reports the squared bias and variance of the
forecasts from the standard weights forecasts in the second column and, in
the subsequent columns, the di↵erence in squared biases and variances of
the standard weights and the optimal weights forecasts relative to the MSFE
of the standard weights forecasts. It can be seen that the squared bias of
the standard weights forecast is very small and only a fraction of the size of
the variance. The reduction in MSFE that the optimal weights (based on
state probabilities) achieve is therefore for the most part via a reduction in
variance. Yet, in this application there appears to be no trade-o↵ in bias
as the biases of the optimal weights forecasts are no larger and typically
smaller than that of the standard weights forecasts. It appears that the
model uncertainty around the Markov switching model induces a bias that
the optimal weights mitigate, which leads to improvements of the forecasts
in bias and variance.

Having established that the optimal weights improve on the Markov
switching model with standard weights, the question remains how the opti-
mal weights forecasts compare to forecasts from linear models, which here
are AR(p) models with p “ 1, 2, 3, 4 and a mean only model. We select the
best linear model based on the historic forecast performance in line with
the model selection for the Markov switching model. The AR(1) model is
selected for the first 69 forecasts and the AR(2) model for the remaining
forecasts. The resulting MSFE and relative performance of the di↵erent
weighting scheme for the selected Markov switching model are reported in
Table 6. Over the entire forecast period, the performance of the linear mod-
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Table 6: GNP forecasts: comparison to linear models

AR
dyn

w

MS

wŝ w

ˆ⇠ w

ˆM

1983Q2-2014Q1 0.368 0.999 1.000 0.970 0.958

Subperiods

1983Q2-1993Q1 0.265 0.849˚˚ 0.851˚˚ 0.743˚˚ 0.763˚˚

1993Q2-2003Q1 0.280 1.091 1.091 1.114 1.080
2003Q2-2014Q1 0.540 1.023 1.023 1.003 0.988

Note: The second column contains the MSFE of the best linear model.
The remaining columns contain the MSFE of the best Markov switching
model with di↵erent weights relative to that of the linear model. The
best Markov switching model is selected based on standard weights.
The linear model is the AR(1) model for the first 69 forecasts and
AR(2) for the final 55 forecasts. Asterisks denote significance at the
10% (*), 5% (**), and 1% (***) level using the Diebold-Mariano test
statistic.

els is very similar to the Markov switching model with standard weights.
The same is true for the weights conditional on states. This contrasts with
the forecast based on optimal weights conditional on state probabilities that
substantially beat the linear models, even if for the full forecast sample the
di↵erence is not significant at conventional levels.

The results for the three di↵erent subsamples reveal that, in the first
subsample, all Markov switching forecasts significantly improve on the linear
forecasts. The largest gains are made using the optimal weights conditional
on the state probabilities. In the middle subsample, no Markov switching
forecast is more precise than the linear model. In the final subsample, op-
timal weights, w

ˆM again yield forecasts with a lower MSFE than the linear
model. Comparing these results to those in Table 5, suggests that the opti-
mal weights improve forecasts over the standard weights the most when the
data exhibit strong switching behavior. This ties in with the results from
our theory in two ways. First, we showed above that the weights conditional
on the states are tending towards equal weighting, that is in the direction
of the linear models, whereas the optimal weights derived conditional on
state probabilities emphasize the Markov switching nature of the data. Sec-
ond, we demonstrated that, in a three state model, the optimal weights are
around 1{T when the future regime is the middle regime. This appears to
be a distinguishing feature of the subsamples: in the first subsample, the
forecast observation is estimated to be, on average, in the middle regime
with probability 0.65. In the second and third subsamples, in contrast, the
average probabilities are 0.83 and 0.84. Hence, the linear model is more
di�cult to beat in the second and third subsample as, for many forecast ob-
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Table 7: Rossi and Inoue test of forecast
accuracy

w

MS

wŝ w

ˆ⇠ w

ˆM

Test against MS weights

AT 0.585 -0.356 -0.910
RT -0.646 -1.803 -2.342˚˚

Test against AR(1)

AT -0.223 -0.222 -0.208 -0.546
RT -0.954 -0.951 -1.071 -1.575

Test against AR(2)

AT 0.372 0.375 0.261 -0.027
RT -0.469 -0.477 -0.621 -0.928

Note: The beginning of the out-of-sample
forecast evaluation period is varied between
rµT, p1 ´ µqT s with µ “ 0.35 and T “ 264.
AT denotes the average and RT the supremum
of the Diebold-Mariano test statistics over the
range of forecast periods. Asterisks denote sig-
nificance at the 10% (*), 5% (**), and 1% (***)
level.

servations, the forecast from the linear model is close to the optimal forecast
from the Markov switching model.

In order to check the robustness of our results to the choice of forecast
sample, we additionally use the forecast accuracy tests suggested by Rossi
and Inoue (2012). The tests require the calculation of Diebold-Mariano test
statistics over a range of possible out-of-sample forecast windows. From
these di↵erent windows, two tests can be constructed: first, the AT test,
which is the average of the Diebold-Mariano test statistics, and, second,
the RT test, which is the supremum of the Diebold-Mariano test statistics.
The application of these tests comes with two caveats in our application.
First, the relative short first estimation window implied by these tests is
problematic as various switches of the Markov chain are required for the
estimation of Markov switching models. For the test by Rossi and Inoue
(2012), the beginning of the out-of-sample forecast evaluation period is var-
ied over the interval rµT, p1 ´ µqT s and we set µ to the maximum of 0.35.
In contrast, in the baseline application above, the shortest estimation sam-
ple is 0.53T . Early forecasts for the Rossi and Inoue test may su↵er as a
result of a short estimation window. Second, as a further consequence of
the shortened estimation sample, we cannot use cross-validation as model
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selection procedure and therefore consider only the MSM(3)-AR(1) model,
which has been selected in our baseline forecast procedure throughout, and
for the linear model we use the AR(1) and AR(2) models, which are the
models selected in the baseline forecasting exercise.

Table 7 reports the test statistics and associated significance levels. The
top panel reports the test statistics of the optimal weights forecasts against
the standard weights forecasts. It can be seen that the signs of the test
statistics are as expected and that the w

ˆM weights provide significant im-
provements on the standard weights according to the RT test. The lower
two panels of Table 7 report the test statistics when the MSM(3)-AR(1)
model is tested against a simple AR(1) and AR(2) model. For the AR(1)
model the signs are as expected, although the test statistics do not exceed
the critical values reported in Rossi and Inoue (2012). For the AR(2) model
the AT test statistic for w

ˆM weights remains negative. For these weights the
largest negative RT test statistic is observed, which it is not significant at
conventional levels. This reflects the fact that the linear model is a close ap-
proximation to the optimal weights Markov switching model as the forecast
sample is dominated by observations that are most likely from the middle
regime.

7 Conclusion

In this paper, we have derived optimal forecasts for Markov switching mod-
els and analyzed the e↵ect of uncertainty around states on forecasts based
on optimal weights. The importance of uncertainty of the states of the
Markov chain is highlighted in the comparison of forecasts from weights
conditional on the states and those when the states are not known. The op-
timal weights for known states share the properties of the weights derived in
Pesaran et al. (2013) and are asymptotically identical to the Markov switch-
ing weights. Improvements in forecasting performance are found when the
ratio of the number of observations to the number of estimated parame-
ters is small. This contrasts with the optimal weights for unknown states
that are asymptotically di↵erent from the Markov switching weights and po-
tential improvements in forecasting accuracy can be considerable for large
di↵erences in parameters even in large samples.

The results from theory and the application show that optimal fore-
casts can di↵er substantially from standard MS forecasts. Optimal weights
emphasize the Markov switching nature of the DGP more than standard
weights do. However, in the three state case, the optimal weights for fore-
casts in the middle regime lead to weights that e↵ectively ignore the Markov
switching nature of the data. This is the case for the GNP forecasts from
the great moderation where the vast majority of observations are from the
middle regime. This explains the di�culty of Markov switching forecasts
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to beat linear models, as the optimal forecast from the Markov switching
model is essentially the same as the forecast from the linear model.

For practitioners two messages emerge. First, when the observation in
the forecast period could likely be from any regime of the Markov switching
model, optimal weights conditional on state probabilities will substantially
improve forecasts. When the size of the switches is moderate or regime
estimates precise, weights that ignore the covariances of the states are more
e�cient as the additional estimation uncertainty introduced by estimating
the covariances of the states dominates the forecasts. When switches are
large yet state remain uncertain using the full second moment matrix of
the Markov chain leads to more precise forecasts. However, the di↵erence
between the two optimal weights is small compared to the overall gains
in forecast accuracy. Second, when one expects to forecast predominantly
observations from the middle regime in a three state model, using a linear
model will lead to forecasts that are e↵ectively the optimal forecasts from
the Markov switching model but with the benefit of substantially reduced
estimation uncertainty.
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