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Abstract

We derive forecasts for Markov switching models that are optimal
in the MSFE sense by means of weighting observations. We provide an-
alytic expressions of the weights conditional on the Markov states and
conditional on state probabilities. This allows us to study the effect of
uncertainty around states on forecasts. It emerges that, even in large
samples, forecasting performance increases substantially when the con-
struction of optimal weights takes uncertainty around states into ac-
count. Performance of the optimal weights is shown through simu-
lations and an application to US GNP, where using optimal weights
leads to significant reductions in MSFE.
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1 Introduction

Markov switching models have long been recognized to suffer from a discrep-
ancy between in-sample and out-of-sample performance. In-sample analysis
of Markov switching models often leads to appealing results, for example, the
identification of business cycles. Out-of-sample performance, in contrast, is
frequently inferior to simple benchmark models. Examples include forecast-
ing exchange rates by Engel (1994), Dacco and Satchell (1999) and Klaassen
(2005), forecasting US GNP growth by Clements and Krolzig (1998) and
Perez-Quiros and Timmermann (2001), forecasting US unemployment by
Deschamps (2008), and forecasting house prices by Crawford and Fratan-
toni (2003). Additionally, Guidolin (2011) provides a recent review of the
use of Markov switching models in finance.

In this paper, we derive minimum mean square forecast error (MSFE)
forecasts for Markov switching models by means of optimal weighting schemes
for observations. We provide simple, analytic expressions for the weights
when the model has an arbitrary number of states and exogenous regres-
sors. We find that forecasts using optimal weights substantially increase
forecast precision and, in our application, are more precise than linear al-
ternatives. Additionally, optimal weights lead to insights that help explain
why standard Markov switching forecasts are often less precise than linear
forecasts.

We start our discussion assuming that the states of the Markov switching
model are known and, in a second step, we relax this assumption. Condi-
tional on the states of the Markov switching model, the weights mirror those
obtained by Pesaran et al. (2013), emphasizing a correspondence with the
structural break model. The weights depend on the number of observa-
tions per regime and the relative differences of the parameter between the
regimes. While, conditional on the states, the usual Markov switching fore-
casts assign non-zero weights only to observations from the same state as
that of the forecast period, the optimal weights assign non-zero weights to
observations from all states. Using all observations reduces the variance of
the forecast but introduces a bias, and optimally weighting all observations
ensures that the trade-off is optimal in the MSFE sense. In the case of three
regimes, the weights have interesting properties: for some parameter values,
the optimal weights correspond to equal weighting of observations; for an-
other range of parameter values, observations in regimes other than that of
the future observation will be most heavily weighted. However, conditional
on the states of the Markov switching model, the optimal weights can be
written as Op1{T q corrections to the usual Markov switching weights, which
implies that, conditional on the states, standard Markov switching weights
asymptotically achieve the minimum MSFE.

In practice, the states of the Markov switching model are not known with
certainty. We therefore relax the assumption that the states are known and
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derive weights conditional on state probabilities, which is the information
used in standard Markov switching forecasts. This results in optimal weights
that no longer correspond to those for the structural break model. Contrast-
ing weights conditional on states with those conditional on state probabilities
leads to interesting insights into the role uncertainty around states plays for
forecasting. While weights conditional on states and the weights implicit in
standard Markov switching forecasts downplay the Markov switching nature
of the data when estimates of states are plugged in, weights conditional on
state probabilities retain the emphasis on the Markov switching nature of
the data. This results in a performance of forecasts from optimal weights
conditional on state probabilities relative to standard Markov switching fore-
casts that increases in the difference between the regimes in terms of their
parameters and in the variance of the estimated smoothed probabilities.
The forecast improvements from using optimal weights do not vanish as
the sample size increases as the standard weights and the optimal weights
conditional on the state probabilities are not asymptotically equivalent.

We perform Monte Carlo experiments to evaluate the performance of
the optimal weights. The results confirm the theoretically expected im-
provements. The weights that are derived conditional on the states improve
for small differences in parameters and small samples. The weights based
on state probabilities produce substantial gains for large differences in pa-
rameters and a large variance in the smoothed probability vector, and these
improvements increase with the sample size.

We apply our methodology to forecasting quarterly US GNP. Out-of-
sample forecasts are constructed for 124 quarters and a range of Markov
switching models. At each point, forecasts are made with the Markov switch-
ing model that has the best forecasting history using standard weights. With
this model, we calculate forecasts based on the standard Markov switching
weights and the optimal weights developed in this paper. The results suggest
that the forecasts using optimal weights significantly outperform the stan-
dard Markov switching forecast. We compare our forecasting schemes to a
range of linear alternatives and find that they lead to improved forecasts.
We analyze the sensitivity of the results to the choice of the out-of-sample
forecast evaluation period using the tests of Rossi and Inoue (2012), which
confirm our findings.

The outline of the paper is as follows. Section 2 introduces the model and
the standard forecast. In Section 3 we derive the optimal weights for a simple
location model and in Section 4 for a model with exogenous regressors.
Monte Carlo experiments are presented in Section 5 and an application to
US GNP in Section 6. Finally, Section 7 concludes the paper. Details of the
derivations are presented in the Appendix.
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2 Markov switching models and their forecasts

Consider the following m-state Markov switching model

yt “ β
1
stxt ` σstεt, εt „ iidp0, 1q (1)

where βst “ B1st, B “ pβ11,β
1
2, . . . ,β

1
mq
1 is an m ˆ k matrix, βi is a k ˆ 1

parameter vector, xt is a k ˆ 1 vector of exogenous regressors, σst “ σ
1st,

σ “ pσ1, σ2, . . . , σmq
1 are m ˆ 1 vectors of error standard deviations, and

st “ ps1t, s2t, . . . , smtq
1 is an m ˆ 1 vector of binary state indicators, such

that sit “ 1 and sjt “ 0, j ‰ i, if the process is in state i at time t.
This is the standard Markov switching model introduced by Hamilton

(1989). The model is completed by a description of the stochastic process
governing the states, where st is assumed to be an ergodic Markov chain
with transition probabilities

P “

»

—

—

—

–

p11 p21 ¨ ¨ ¨ pm1

p12 p22 ¨ ¨ ¨ pm2
...

...
...

p1m p2m ¨ ¨ ¨ pmm

fi

ffi

ffi

ffi

fl

where pij “ Ppsjt “ 1|si,t´1 “ 1q is the transition probability from state i
to state j.

The standard forecast, in this context, would be to estimate βi, i “
1, 2, . . . ,m, as

β̂i “

˜

T
ÿ

t“1

ξ̂itxtx
1
t

¸´1 T
ÿ

t“1

ξ̂itxtyt (2)

where ξ̂it is the estimated probability that observation at time t is from state
i using, for example, the smoothing algorithm of Kim (1994). The forecast
is then constructed as ŷT`1 “

řm
i“1 ξ̂i,T`1x

1
T`1β̂i, see Hamilton (1994).

In this paper, we derive the minimum MSFE forecast for finite samples
and different assumptions about the information set that the forecast is
based on. We replace the estimated probabilities by general weights wt for
the forecast ŷT`1 “ x1T`1β̂pwq, so that

β̂pwq “

˜

T
ÿ

t“1

wtxtx
1
t

¸´1 T
ÿ

t“1

wtxtyt

subject to the restriction
řT
t“1wt “ 1. The forecasts are optimal in the

sense that the weights will be chosen such that they minimize the expected
MSFE.
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3 Optimal forecasts for a simple model

Initially, consider a simple version of model (1) with k “ 1 and xt “ 1 such
that

yt “ β
1st ` σ

1stεt, εt „ iidp0, 1q (3)

where β “ pβ1, β2, . . . , βmq
1. We use this simple model for ease of exposition

but will return to the full model (1) in Section 4 below.
We can derive the optimal forecast by using a weighted average of the

observations with weights that minimize the resulting MSFE. The forecast
from weighted observations for (3) is

ŷT`1 “

T
ÿ

t“1

wtyt (4)

subject to
řT
t“1wt “ 1.

Note, that the standard forecast can be expressed as (4) with weights

wMS,t “

M
ÿ

i“1

ξ̂i,T`1ξ̂it
řT
t“1 ξ̂it

(5)

which only depend on the smoothed probabilities, have the property that
řT
t“1wMS,t “ 1, and which we will refer to as the standard Markov switching

weights. It will be of interest to compare weights (5) to those obtained by
minimizing the MSFE.

The forecast error, which, without loss of generality, is scaled by the
error standard deviation of regime m, is

σ´1
m eT`1 “ σ´1

m pyT`1 ´ ŷT`1q

“ λ1s̃T`1 ` q1sT`1εT`1 ´

T
ÿ

t“1

wtλ
1s̃t ´

T
ÿ

t“1

wtq
1stεt

where

λ “

¨

˚

˚

˚

˝

pβ2 ´ β1q{σm
pβ3 ´ β1q{σm

...
pβm ´ β1q{σm

˛

‹

‹

‹

‚

, q “

¨

˚

˚

˚

˝

σ1{σm
σ2{σm

...
1

˛

‹

‹

‹

‚

and s̃t “

¨

˚

˚

˚

˝

s2t

s3t
...
smt

˛

‹

‹

‹

‚
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and the scaled MSFE is

E
`

σ´2
m e2

T`1

˘

“ E

$

&

%

«

λ1

˜

s̃T`1 ´

T
ÿ

t“1

wts̃t

¸ff2
,

.

-

` E
“

pq1sT`1q
2
‰

`

T
ÿ

t“1

w2
tE

“

pq1stq
2
‰

“ E
`

s̃1T`1λλ
1s̃T`1

˘

` 2w1E
´

S̃1λλ1s̃T`1

¯

`w1E
´

S̃1λλ1S̃
¯

w ` E
“

pq1sT`1q
2
‰

`w1EpQqw

“ w1
”

EpQq ` E
´

S̃1λλ1S̃
¯ı

w ` 2w1E
´

S̃1λλ1s̃T`1

¯

(6)

`E
`

s̃1T`1λλ
1s̃T`1

˘

` E
“

pq1sT`1q
2
‰

where S̃ “ ps̃1, s̃2, . . . , s̃T q, S “ ps1, s2, . . . , sT q and Q is a diagonal matrix
with typical pt, tq-element Qtt “

řm
i“1 q

2
i sit.

Furthermore, define

M “ EpQq ` E
´

S̃1λλ1S̃
¯

(7)

and note that M is invertible as Q is a diagonal matrix with positive entries

and E
´

S̃1λλ1S̃
¯

“ CovpS̃1λq ` EpS̃1λqEpλ1S̃q, so that M is the sum of a

positive definite matrix and a positive semi-definite matrix and therefore
itself positive definite.

Minimizing (6) subject to
řT
t“1wt “ 1 yields the optimal weights

w “ M´1E
´

S̃1λλ1s̃T`1

¯

`
M´1ι

ι1M´1ι

”

1´ ι1M´1E
´

S̃1λλ1s̃T`1

¯ı

(8)

The MSFE given by (6) when applying the optimal weights (8) is

MSFEpwq “

”

1´ ι1M´1E
´

S̃1λλ1s̃T`1

¯ı2

ι1M´1ι
` E

`

s̃1T`1λλ
1s̃T`1

˘

(9)

´E
´

S̃1λλ1s̃T`1

¯1

M´1E
´

S̃1λλ1s̃T`1

¯

` E
“

pq1sT`1q
2
‰

In order to proceed, we need to specify the information set that is avail-
able to calculate the expectations in (8) and (9). Initially, we will base the
weights on the full information set of the DGP, including the state for each
observation. Clearly, this information is not available in practice. However,
the resulting analysis will prove to be highly informative. The intuition that
is gained will prove useful when interpreting the forecast that we will obtain
subsequently when allowing for uncertainty around the states. This second
step will enable us to analyze the differences between the plug-in estimator
for the weights that assume knowledge of the states and optimal weights
that are derived under the assumption that the states are uncertain.

Note, that we condition on λ throughout our analysis. The reason is
that, as Pesaran et al. (2013) show, the importance of the time of the break
(or, in our case, switches between states) is of order Op1{T q for the optimal
weights whereas that of λ is of order Op1{T 2q.
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3.1 Weights conditional on the states

Conditional on the states the expectation operator in (7), (8) and (9) can

be omitted such that M “ Q ` S̃1λλ1S̃ and E
´

S̃1λλ1s̃T`1

¯

“ S̃1λλ1s̃T`1.

Given the number of states, weights can now readily be derived.

3.1.1 Two-state Markov switching models

In the case of a two-state Markov switching model, s̃ “ ps21, s22, . . . , s2T q
1

and therefore M “ Q` λ2s̃s̃1 for which the inverse is given by

M´1 “ Q´1 ´
λ2

1` λ2s̃1Q´1s̃
Q´1s̃s̃1Q´1

“ Q´1 ´
λ2

1` λ2Tπ2
s̃s̃1

where λ2 “
pβ2´β1q2

σ2
2

and πi “
1
T

řT
t“1 sit. The elements of the diagonal

matrix Q are Qtt “ q2s1t ` s2t with q “ σ1
σ2

. This yields the following
weights:

When s1,T`1 “ 1,

w11 “
1

T

1` Tλ2π2

π2q2 ` π1p1` Tπ2λ2q
if s1t “ 1 (10)

w12 “
1

T

q2

π2q2 ` π1p1` Tπ2λ2q
if s2t “ 1 (11)

where wij “ wpsi,T`1 “ 1, sjt “ 1q.
When s2,T`1 “ 1,

w21 “
1

T

1

rπ2q2 ` π1p1` Tπ2λ2qs
if s1t “ 1 (12)

w22 “
1

T

q2 ` Tλ2π1

rπ2q2 ` π1p1` Tπ2λ2qs
if s2t “ 1 (13)

Note that, conditional on the state of the future observation, the weights
are symmetric under a relabeling of the states. Derivations are provided in
Appendix A.1.1.

The weights are equivalent to the weights for the break point process
developed by Pesaran et al. (2013). This implies that, conditional on the
states, a Markov switching model is equivalent to a break point model with
known break point with the exception that the observations are ordered by
the underlying Markov process.

Since the weights w12 and w21 are nonzero, the decrease in the variance
of the optimal weights forecast should outweigh the increase in the squared
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Table 1: Ratio between the expected MSFE for optimal weights and for
standard MS weights, T “ 50

λ q “ 1 q “ 0.5

π2 “ 0.1 0.2 0.5 0.1 0.2 0.5

0 0.8500 0.9273 0.9808 0.8500 0.9273 0.9808
0.5 0.9294 0.9758 0.9953 0.9268 0.9745 0.9949
1 0.9727 0.9919 0.9986 0.9724 0.9918 0.9985
2 0.9921 0.9978 0.9996 0.9921 0.9978 0.9996

Note: Reported are the ratio between (14) and (15) when s2,T`1 “ 1

for different values of λ, the difference in means, and q, the ratio of

standard deviations, and π2, the proportion of observations in state 2.

bias that results from using all observations. The expected MSFE under the
above weights is

Erσ´2
2 e2

T`1sopt “

#

q2p1` w11q if s1,T`1 “ 1

1` w22 if s2,T`1 “ 1
(14)

We can compare this to the expected MSFE for standard Markov switch-
ing weights, which is given by

Erσ´2
2 e2

T`1sMS “

#

q2
´

1` 1
Tπ1

¯

if s1,T`1 “ 1

1` 1
Tπ2

if s2,T`1 “ 1
(15)

It is easy to show that Erσ´2
2 e2

T`1sopt ă Erσ´2
2 e2

T`1sMS. Numerical examples
of the magnitude of the improvement in MSFE are presented in Table 1,
which shows that the improvements scale inversely with the differences in
parameters. The intuition for this result is that the observations of the
respective other state are increasingly useful for forecasting the smaller the
difference between states. In fact, the difference between (14) and (15) is
maximized when λ “ 0.

3.1.2 Three-state Markov switching models

If sj,T`1 “ 1, then define q2
i “ σ2

i {σ
2
j and λ2

i “ pβi ´ βjq
2{σ2

j where i, j P
1, 2, 3. The weights are

wjj “
1

T

1` T
ř3
i“1 q

´2
i λ2

iπi
ř3
i“1 q

´2
i πi ` T

ř3
i“1

ř3
m“1 q

´2
i q´2

m πiπmλmpλm ´ λiq

wjk “
1

T

q´2
k ` Tq´2

k

řm
i“1 q

´2
i λiπipλi ´ λkq

ř3
i“1 q

´2
i πi ` T

ř3
i“1

ř3
m“1 q

´2
i q´2

m πiπmλipλi ´ λmq

wjl “
1

T

q´2
l ` Tq´2

l

řm
i“1 q

´2
i λiπipλi ´ λlq

ř3
i“1 q

´2
i πi ` T

ř3
i“1

ř3
m“1 q

´2
i q´2

m πiπmλmpλi ´ λmq

(16)
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Figure 1: Optimal weights for three state Markov switching model
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Note: The graph depicts the optimal weights (16) for one observation in each state when

s1,T`1 “ 1, for λ3 over the range ´3 to 3, λ2 “ ´2.5, T “ 100, π1 “ 0.2, and π2 “ π3 “

0.4. The solid line gives the weights for the observations where s1t “ 1, the dash-dotted

line those where s2t “ 1, and the dashed line those for s3t “ 1.

Derivations are in Appendix A.1.2.
Figure 1 plots weights (16) for λ3 over the range ´3 to 3, and λ2 “ ´2.5,

π1 “ 0.2, π2 “ π3 “ 0.4, T “ 100 and q1 “ q2 “ 1 for s1,t`1 “ 1, that
is, the future observation is known to be from the first state. Each line
represents the weight for one observation in each state. As 20 observations
are in state 1 and 40 in the other two states, it can easily be verified that the
weights sum to one when looking at the weights at λ3 “ ˘2.5. The standard
Markov switching weights are independent of the differences in parameters
with w11 “ 0.05 and w1i “ 0 for i ‰ 1 and therefore not included in Figure 1.

On the left of the graph, where λ3 “ ´3, the observations from state 1
receive nearly all the weight, those from state 2 receive a small positive
weight and those from state 3 a small negative weight. When λ3 “ ´2.5
the weights for s2t “ 1 and s3t “ 1 are equal and close to zero. The
intuition for the equal weights is that at λ2 “ λ3 the DGP is essentially a
two state Markov switching model and the observations for the states with
equal mean receive the same weight. The relatively large difference between
the mean of state 1 and that of the other states is due to the fact that the
observations from the other states induce a large bias, and therefore weights
on observations with s2t “ 1 and s3t “ 1 are very small.

As λ3 increases, weights for observations from state 3 increase until, at
λ3 “ 0, they are equal to those for observations with s1t “ 1. That is,
as the third state becomes increasingly similar to the first state and the
observations increasingly useful for forecasting. At λ3 “ 0, the first and the
third state have identical means and the observations therefore receive equal
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Figure 2: MSFE of optimal weights relative to standard Markov switching
weights
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Note: The figure displays the ratio of the MSFE of the optimal weights relative to that

of the standard MSFE forecast for T “ 100, π1 “ 0.2, π2 “ π3 “ 0.4 for a range of values

for λ2 and λ3.

weight.
As λ3 increases further and 0 ă λ3 ă 2.5, the observations from the

third state are weighted heavier than the observations from the first state
even though state 1 is the future state. The reason for this at first sight
surprising result is that, in this range, the means of observations from state
2 and state 3 have opposite signs. As the bias induced by the observations
from the second state is, in absolute terms, larger than that from the third
state, the weights on the observations from the third state receive a larger
weight to counteract this bias.

At λ3 “ 2.5 “ ´λ2 all observations receive the same weight of 1
T . At

this point, the mean of the observations with s1t “ 1 is between and equally
distant to the means of observations with s2t “ 1 and s3t “ 1, which implies
that with equal weight any biases arising from using observations of the other
states cancel. In this case, the optimal weights effectively ignore the Markov
switching structure of the model and forecast with equal weights, which is a
very different weighting scheme from that suggested by the Markov switching
model.

As in the two state case, when sj,T`1 “ 1 the expected MSFE using the
optimal weights is of the form

E
`

σ´2
i e2

T`1

˘

opt
“
σ2
j

σ2
i

p1` wjjq (17)
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with wjj given in (16). For the Markov switching weights we have

E
`

σ´2
i e2

T`1

˘

MS
“
σ2
j

σ2
i

ˆ

1`
1

Tπj

˙

Figure 2 displays the ratio of MSFE of the optimal weights relative to
that of the standard MSFE forecast for T “ 100, π1 “ 0.2, π2 “ π3 “ 0.4
for a range of values for λ2 and λ3. At λ2 “ λ3 “ ˘3 the gains from using
optimal weights are very small. In this case, the model is essentially a two
state model with a large difference in mean between the states. When λ2 and
λ3 are of opposite sign, the improvements are the largest. We can therefore
expect most gains when the observation to be forecast is in the regime with
intermediate location.

3.1.3 m-state Markov switching models

For sj,T`1 “ 1 we set λi “
βi´βj
σj

and qi “
σi
σj

, which gives for the weights

for observations with sl,t “ 1

wjl “
1

T

q´2
l

`

1` T
řm
i“1 q

´2
i λiπipλi ´ λlq

˘

řm
i“1 q

´2
i πi ` T

řm
i“1

řm
k“1 q

´2
i q´2

k πiπkλipλi ´ λkq
(18)

As in the previous cases, the expected MSFE when sj,T`1 “ 1 is

E
`

σ´2
i e2

T`1

˘

opt
“
σ2
j

σ2
i

p1` wjjq

The derivation of the weights and the MSFE is in Appendix A.1.2. Maxi-
mizing the expected MSFE with respect to βj yields

βj “

řm
k“1 q

´2
k πkβk

řm
k“1 q

´2
k πk

Hence, the largest gain occurs when the regime to be forecast is located at
the probability and variance weighted average of the other two regimes. The
minimum MSFE is then

E
`

σ´2
i e2

T`1

˘

“
1

σ2
i

˜

σ2
j `

1

T

1
řm
k“1 σ

´2
k πk

¸

and when the variances are equal this reduces to

E
`

σ´2
i e2

T`1

˘

“ 1`
1

T

Thus, the maximum improvement is independent of the number of states
when all variances are equal.
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3.1.4 Large T approximation

Interesting results can be obtained when considering the large sample ap-
proximation of the two state weights. The optimal weight assigned to an
observation is given by

Tw “s1,T`1

„

1` λ2Tπ2

π2q2 ` π1p1` λ2Tπ2q
s1t `

q2

π2q2 ` π1p1` λ2Tπ2q
s2t



`s2,T`1

„

1

π2q2 ` π1p1` λ2Tπ2q
s1t `

q2 ` λ2Tπ1

π2q2 ` π1p1` λ2Tπ2q
s2t



We approximate this expression using that p1 ` θ
T q
´1 “ 1 ´ θ

T ` OpT
´2q,

where θ “ pπ2q
2 ` π1q{pλ

2π2π1q. This yields

Tw “

ˆ

1

π1
´

1

T

q2

λ2π2
1

˙

s1ts1,T`1 `
1

T

q2

λ2π1π2
s2ts1,T`1`

`
1

T

1

λ2π1π2
s1ts2,T`1 `

ˆ

1

π2
´

1

T

1

λ2π2
2

˙

s2ts2,T`1 `OpT´2q

(19)

Hence, the standard Markov switching weights are optimal up to a first order
approximation in T . It is worth noting that this is equivalent to the result
obtained by Pesaran et al. (2013) for the structural break case where the
first order approximation gives zero weight to pre-break observations and
equally weight the post-break observations. This result in (19) also suggests
that, in a Markov switching model, accurate estimation of the proportions of
the sample in each state is of first order importance, whereas the differences
in means are of second order importance to obtain a minimal MSFE. This is
the motivation for considering the uncertainty around the state estimates,
which we turn to now.

3.2 Optimal weights when states are uncertain

We will now contrast the weights conditional on the states with the weights
that do not assume knowledge of the states. The expectations in (8) can
be expressed in terms of the underlying Markov chain. However, it turns
out that in this case analytic expressions for the inverse of M cannot be
obtained. In Section 3.3, we will show how numerical values for the inverse
can be used to calculate numerical values for the optimal weights.

In order to analyze the theoretical properties of the optimal weights, we
need analytic expressions for the weights, which will allow us to contrast
them with the weights that are derived conditional on the states. Such ex-
pressions can be obtained by making the simplifying assumption that we
can condition on given state probabilities. Estimates of the probabilities
are available as output of the estimation of Markov switching models, and
this information is also used for the standard forecast from Markov switch-
ing models in (2). Note, however, that this is, in fact, more general than

12



the Markov switching model and can accommodate state probabilities from
other sources such as surveys of experts or models outside the one under
consideration.

Denote the probability of state i occurring at time t by ξit. The expec-
tations in (8) and (9) are then

Epsitsj,t`mq “

#

ξit if i “ j

ξitξj,t`m if i ‰ j,m ě 0

We will initially focus on the two state case, but we will extend the analysis
to m states below.

3.2.1 Two-state Markov switching models

In a two state model, we have S̃ “ s2 “ ps21, s22, . . . , s2T q
1. The matrix M

in (8) is given by

M “ λ2ξξ1 ` λ2V ` q2I` p1´ q2qΞ

“ λ2ξξ1 `D

with ξ “ pξ21, ξ22, . . . , ξ2T q, Ξ “ diagpξq, V “ ΞpI ´ Ξq, and D “ λ2V `

q2I` p1´ q2qΞ and again q “ σ1{σ2. The inverse of M is

M´1 “ D´1 ´
λ2

1` λ2ξ1D´1ξ
D´1ξξ1D´1 (20)

Using (8) and (20) yields

w “ λ2ξ2,T`1M
´1ξ `

M´1ι

ι1M´1ι

`

1´ λ2ξ2,T`1ι
1M´1ξ

˘

(21)

Denote the typical pt, tq-element of D´1 by dt, where

dt “
“

λ2ξ2,tp1´ ξ2,tq ` q
2 ` p1´ q2qξ2,t

‰´1

Then, the weight for the observation at time t is given by

wt “
dt

”

1` λ2
řT
t1“1 dt1pξ2t ´ ξ2t1qpξ2,T`1 ´ ξ2t1q

ı

řT
t1“1 dt1 ` λ

2

„

´

řT
t1“1 dt1ξ

2
2t1

¯´

řT
t1“1 dt1

¯

´

´

řT
t1“1 dt1ξ2t1

¯2
 (22)

The expected MSFE can be calculated from (6) and reduces to

Epσ´2
2 e2

T`1q “
“

1` λ2ξ2,T`1p1´ ξ2,T`1q
‰

p1` wT`1q (23)

where wT`1 is given by (22).

13



When T is large, weights (22) can be written as

wt “ d̃t

řT
t1“1 d̃t1 pξ2,T`1 ´ ξ2t1q pξ2t ´ ξ2t1q

řT
t1“1 d̃t1

´

ξ2t1 ´
řT
t2“1 d̃t2ξ2t2

¯2 `OpT´2q (24)

where d̃t “ dt{p
řT
t1“1 dtq. Derivations are provided in Appendix A.2.1.

While the weights in (22) and (24) provide closed form solutions, inter-
pretation can be aided by momentarily making the simplifying assumption
of constant state variances.

Constant state variance The interpretation of (22) and (24) is compli-
cated by the fact that ξ2t is a continuous variable in the range r0, 1s – as
opposed to the binary variable s2t for the weights conditional on states – so
that an infinite number of possible combinations of ξ2t over t is possible. In
order to simplify the interpretation of the weights, we will therefore, for a
moment, assume that the variance of the states is constant and denoted as
σ2
s “ ξ2tp1´ ξ2tq.

Summing σ2
s over t and solving for σ2

s yields

σ2
s “ ξ̄1ξ̄2 ´

1

T

ÿ

t

pξ2t ´ ξ̄2q
2 (25)

where ξ̄1 “
1
T

řT
t“1 ξ1t and ξ̄2 “

1
T

řT
t“1 ξ2t. Note that the maximum value

of σ2
s is given by ξ̄2ξ̄1, which occurs when the probability vector is constant.

In the case of a constant σ2
s , d̃t simplifies to 1{T . Hence, (22) can be written

as

wt “
1

T

„

1` λ2 pξ2,T`1 ´ ξ̄2qpξ2t ´ ξ̄2q

pT d̄q´1 ` λ2pξ̄1ξ̄2 ´ σ2
sq



and the large T approximation (24) as

wt “
1

T
`
pξ2,T`1 ´ ξ̄2qpξ2t ´ ξ̄2q

T pξ̄1ξ̄2 ´ σ2
sq

(26)

The standard Markov switching weights can be expressed as

wMS
t “

1

T
`
pξ2,T`1 ´ ξ̄2qpξ2t ´ ξ̄2q

T ξ̄1ξ̄2
(27)

see Appendix A.2.2. From a comparison of (26) and (27) it is clear that
the two weights differ by the factor σ2

s in the denominator and that this
difference will not disappear asymptotically. Effectively, the Markov switch-
ing weights are more conservative as the optimal weights exploit the regime
switching structure more strongly because of the smaller denominator in
(26) compared to (27).
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The MSFE for the optimal weights and for the standard Markov switch-
ing weights under constant state variance are

E
`

σ´2
2 e2

T`1

˘

opt
“

“

1` λ2ξ2,T`1p1´ ξ2,T`1q
‰

ˆ

ˆ

1`
1

T
`

λ2pξ2,T`1 ´ ξ̄2q
2

1` λ2σ2
s ` λ

2T pξ̄2p1´ ξ̄2q ´ σ2
sq

˙

(28)

E
`

σ´2
2 e2

T`1

˘

MS
“ 1` λ2ξ2,T`1p1´ ξ2,T`1q `

1

T
pλ2σ2

s ` 1q (29)

`

ˆ

ξ2,T`1 ´ ξ̄2

ξ̄2p1´ ξ̄2q

˙2 „
1

T
pξ̄2p1´ ξ̄2q ´ σ

2
sq
`

λ2σ2
s ` 1

˘

` λ2σ4
s



The MSFE for the optimal weights is derived from (23) by substituting
in the weights in (22) and using the fact that d̃t “ 1{T and dt “ d, for
t “ 1, 2, . . . , T`1, sees Appendix A.2.3. The MSFE for the standard Markov
switching weights is derived in Appendix A.2.2.

Table 2 displays the improvements in forecast performance expressed as
the ratio of (28) over (29) for different values of ξ̄2, σ̃2

s “ σ2
s{pξ̄2ξ̄1q and λ for

T “ 100. The results indicate that the optimal weights lead to larger gains
when λ is large and when ξ̄2 is closer to 0.5. The influence of σ2

s is U-shaped
with the largest improvement when σ2

s “ 0.6. The results in Table 2 show
that the improvement can be as large as 11.3% for the range of parameter
values considered here.

In this simplified framework, the increase in forecast accuracy does not
disappear when the sample size increases. The asymptotic approximation
to the MSFE under optimal weights is given by

E
`

σ2
0e

2
T`1

˘

opt
“ 1` λ2ξ2,T`1p1´ ξ2,T`1q `OpT´1q (30)

and that under standard Markov switching weights is

E
`

σ2
0e

2
T`1

˘

MS
“ 1` λ2ξ2,T`1p1´ ξ2,T`1q `

ˆ

ξ2,T`1 ´ ξ̄2

ξ̄2ξ̄1

˙2

λ2σ4
s `OpT´1q

(31)
The difference between (31) and (30) is positive and does not disappear
asymptotically. The relative improvement is expected to be high when λ,
σ2
s , and the difference ξ2,T`1 ´ ξ̄2 are large.

3.2.2 m-state Markov switching models

The derivations can be extended to an arbitrary number of states. Note
that M “ EpQq ` EpS̃1λλ1S̃q and that we can write

EpS̃1λλ1S̃q “ EpS̃q1λλ1EpS̃q `A
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Table 2: Maximum improvements in a two state model with T “ 100

ξ̄2

σ̃2
s 0.1 0.2 0.3 0.4 0.5

λ “ 2 0 1.000 1.000 1.000 1.000 1.000
0.2 0.993 0.986 0.981 0.979 0.978
0.4 0.977 0.960 0.950 0.944 0.942
0.6 0.967 0.946 0.934 0.927 0.926
0.8 0.974 0.957 0.948 0.944 0.942

λ “ 3 0 1.000 1.000 1.000 1.000 1.000
0.2 0.982 0.969 0.962 0.958 0.957
0.4 0.951 0.926 0.913 0.907 0.905
0.6 0.935 0.908 0.895 0.889 0.887
0.8 0.949 0.930 0.921 0.917 0.916

Note: The table reports the ratio of the MSFE of the optimal
weights to that of the Markov switching weights conditional
on a constant state variance σ2

s . λ “ pβ2´β1q{σ denotes the
scaled difference between means, ξ̄2 the average probability
for state 2, and σ̃2

s is a negative function of the variance of
the state 2 probability.

where, conditional on the state probabilities, ξjt, j “ 1, 2, . . . ,m,

A “

m
ÿ

j“2

λ2
jΞj ´

˜

m
ÿ

j“2

λjΞj

¸2

and Ξj is a T ˆ T diagonal matrix with typical element ξjt. Define ξ̃ “
EpS̃q1λ, which is a T ˆ 1 vector, and D “ EpQq `A. Then the inverse of
M is

M´1 “ D´1 ´
1

1` ξ̃D´1ξ̃
D´1ξ̃ξ̃

1
D´1

We can use (8) to derive the weights similar to the case of the two-state
weights

wt “
d
pmq
t

!

1`
”

řT
t1“1 d

pmq
t1 pξ̃t ´ ξ̃t1qpξ̃T`1 ´ ξ̃t1q

ı)

řT
t1“1 d

pmq
t1 `

´

řT
t1“1 d

pmq
t1 ξ̃2

t1

¯´

řT
t1“1 d

pmq
t1

¯

´

´

řT
t1“1 d

pmq
t1 ξ̃t1

¯2 (32)
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Figure 3: Optimal weights for three state Markov switching model
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Note: The graphs depicts the optimal weights (16) for one observation in each state

conditional on the states in both plots as the lighter, gray lines. In the left plot the

darker lines are the optimal weights (16) for one observation in each state where the

probabilities are used as plug-in values for the states. In the right plot the darker lines

are the weights (32) that are derived conditional on the states under state probabilities

ξ̂T`1 “ r0.8, 0.1, 0.1s
1 for λ3 over the range ´3 to 3, λ2 “ ´2.5, T “ 100, π1 “ 0.2, and

π2 “ π3 “ 0.4.

where now we have

d
pmq
t “

»

–

m
ÿ

j“1

q2
j ξjt `

m
ÿ

j“2

λ2
jξjt ´

˜

m
ÿ

j“2

λjξjt

¸2
fi

fl

´1

“

»

–

m
ÿ

j“1

pq2
j ` λ

2
j qξjt ´

˜

m
ÿ

j“2

λjξjt

¸2
fi

fl

´1

ξ̃t “
m
ÿ

j“2

ξjtλj

and where we have used the fact that λ1 “ 0.
Examples of weights for a three state Markov switching model over a

range of λ3 for T “ 100, π1 “ 0.2, π2 “ π3 “ 0.4 and λ2 “ ´2.5 are
plotted in Figure 3. For simplicity of exposition, we assume that the state
probabilities are identical for each state in the sense that a prevailing state
has ξit “ 0.8 and other states ξjt “ 0.1. The light gray lines represent the
optimal weights (16) that are conditional on the states. The graph on the
left plots weights (16) substituting the probabilities ξit for the states sit,
that is, the plug-in estimator of the weights as the black lines. The graph
on the right plots the weights (32) as the black lines.

The graph on the left shows how the introduction of the probabilities
brings the weights closer to equal weighting compared to the weights for
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Figure 4: MSFE of optimal weights to standard Markov switching weights
when states are uncertain
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Note: The figure displays the ratio of the MSFE of the optimal weights relative to that

of the standard MSFE forecast. For details of the parameter settings see the footnote of

Figure 3.

known states. This contrasts with the weights that explicitly take the un-
certainty around the states into account. In the plot on the right these
weights are very close to the weights conditional on the states. Hence, using
the uncertainty of the states in the derivation of the weights leads to weights
that are similar to when the states are known.

An additional difference arises for positive λ3, where the weights con-
ditional on state probabilities for the future state increase over those con-
ditional on states. The reason is that for λ2 and λ3 of opposite sign, the
variance of ι1ξ̃ increases relative to the case of λ’s of equal sign, which affects

d
pmq
t in (32). Hence, the increase of uncertainty about the states leads to an

increased reliance on the data that are likely from same state as the future
observation.

The relative MSFE of optimal weights relative to standard weights is
displayed in Figure 4. When λ2 and λ3 are large and nearly equal, optimal
weights improve dramatically over standard weights as standard weights are
compressed due to the uncertainty around the states. When λ2 and λ3 are
of opposite signs there is a smaller gain as the compression of the standard
weights brings them closer to the optimal weights, which for λ2 “ ´λ3 are
equal weights.
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3.3 Estimating state covariances from the data

Above, we derived weights conditional on the state probabilities, in which
case we can write the expectation of the product of two states as Epsitsj,t`mq “
ξitξj,t`m. While this assumption allows us to find an explicit inverse of the
matrix M and to obtain analytic expressions for the weights, it does not
use the Markov switching nature of the DGP. If one is willing to forgo the
convenience of explicit expressions for the weights, it is possible to estimate
M̂ directly from the data.

To estimate M̂ directly from the data, we now condition on the infor-
mation set up to time T , denoted ΩT . Then Epsitsj,t`m|ΩT q “ ppsj,t`m “
1|ΩT qppsit “ 1|sj,t`m “ 1,ΩT q. The first term is the smoothed probability
of being in state j at time t ` m as given by an EM-algorithm Hamilton
(1994) or a MCMC sampler Kim and Nelson (1999). The second term can
be written as

ppsit “ 1|sj,t`m “ 1,ΩT q “
ξit|t

ξjt`m|t`m´1

«˜

m´1
ź

l“1

P1At`l

¸

P1

ff

i,j

(33)

where At is a m ˆm diagonal matrix with typical i, i-element ξit|t{ξit|t´1,
and ξit|t and ξit|t´1 denote the filtered and forecast probabilities of state i
at time t. The derivation of (33) can be found in Appendix A.2.4. Using
these expressions we can calculate the expectations in (8). Define

Ξ˚ “

«˜

k´1
ź

l“1

P1At`l

¸

P1

ff

2:m,2:m

Then we can write m´ 1ˆm´ 1 matrix of expectations

E
`

s̃ts̃
1
t`k

ˇ

ˇΩT

˘

“ Ξt|tΞ
˚
`

Ξt`k|T ˜Ξt`k|t`k´1

˘

where Ξt|t is an m´ 1ˆm´ 1 matrix with typical i, i element ξ̂it|t is, and

˜ denotes element-by-element division. Recall M “ EpQq ` EpS̃1λλ1S̃q. A
typical element of the second matrix is given by

E
´

S̃1λλ1S̃
ˇ

ˇ

ˇ
ΩT

¯

t,t
“ λ1diag rE p s̃t|ΩT qsλ

E
´

S̃1λλ1S̃
ˇ

ˇ

ˇ
ΩT

¯

t,t`k
“ λ1E

`

s̃ts̃
1
t`k

ˇ

ˇΩT

˘

λ
(34)

Using (34) in (8) yields numerical solutions for the weights.

4 Markov switching models with exogenous re-
gressors

So far, we have considered models that only contain a constant as the re-
gressor. Now, we return to the model with regressors in (1). Rewrite this
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model as

y “

m
ÿ

i“1

SipXβi ` σiεq

“ Xβ1 `

m
ÿ

i“1

SiXpβi ´ β1q `

m
ÿ

i“1

Siσiε

where Si is a T ˆ T matrix with as its j-th diagonal element equal to one
if observation j belongs to state i and zero elsewhere, X a T ˆ k matrix of
exogenous regressors and βi a kˆ 1 vector of parameters, σi the variance of
regime i, and we used the fact that

řm
i“1 Si “ I. Also,

yT`1 “ x1T`1β1 `

m
ÿ

i“2

si,T`1x
1
T`1pβi ´ β1q `

m
ÿ

i“1

si,T`1σiεT`1

As before, we define the optimally weighted estimator as follows

βpwq “ pX1WXq´1X1Wy

The optimal forecast is then given by ŷT`1 “ x1T`1βpwq.
Define λi “ pβi ´ β1q{σm, qi “ σi{σm and Λij “ λiλ

1
j . The expected

MSFE is given by

Epσ´2
m e2

T`1q “

m
ÿ

i“1

Epsi,T`1qx
1
T`1ΛijxT`1 `

m
ÿ

i“1

Epsi,T`1qq
2
i ε

2
T`1 (35)

`x1T`1pX
1WXq´1

m
ÿ

i“1

m
ÿ

j“1

ErpX1WSiXqΛijpX
1SjWXqspX1WXq´1xT`1

`x1T`1pX
1WXq´1

m
ÿ

i“1

q2
iX

1WEpSiqWXpX1WXq´1xT`1

´2x1T`1pX
1WXq´1

m
ÿ

i“1

m
ÿ

j“1

E
`

X1WSiXΛijsj,T`1

˘

xT`1

As in the case of structural breaks analyzed by Pesaran et al. (2013), large
sample approximations to (35) are necessary to obtain analytical expressions
for the weights. We make the following approximations: plimTÑ8X1WX “

ΩXX , plimTÑ8X1SiWX “ ΩXXw1si, plimTÑ8X1W2SiX “ ΩXXw1Siw.
Then, (35) reduces to

E
`

σ´2
m e2

T`1

˘

“

m
ÿ

i“1

Epsi,T`1qx
1
T`1ΛijxT`1 `

m
ÿ

i“1

Epsi,T`1qq
2
i ε

2
T`1

`

m
ÿ

i“1

m
ÿ

j“1

w1Epsis
1
jqwΛijxT`1 ` x1T`1Ω

´1
XX

m
ÿ

i“1

q2
iw

1EpSiqwxT`1

´ 2x1T`1

m
ÿ

i“1

m
ÿ

j“1

w1Epsisj,T`1qΛijxT`1
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Maximizing (4) subject to ι1w “ 1 leads to the following optimal weights

w “ M´1E
´

S̃1φφ1s̃T`1

¯

`
M´1ι

ι1M´1ι

”

1´ ι1M´1E
´

S̃1φφ1s̃T`1

¯ı

(36)

where φi “ x1T`1λi{pxT`1Ω
´1
XXxT`1q

1{2, M “ EpQq`E
´

S̃1φφ1S̃
¯

and Q a

diagonal matrix with typical pt, tq-element Qtt “
řm
i“1 q

2
i sit and

Epσ´2
m e2

T`1qopt “

”

1´ ι1M´1E
´

S̃1φφ1s̃T`1

¯ı2

ι1M´1ι
` E

`

s̃1T`1φφ
1s̃T`1

˘

´ E
´

S̃1φφ1s̃T`1

¯1

M´1E
´

S̃1φφ1s̃T`1

¯

` E
“

pq1sT`1q
2
‰

The results derived for the location model above can, therefore, be straight-
forwardly extended to allow for exogenous regressors by replacing λ with
φ.

5 Evidence from Monte Carlo experiments

5.1 Set up of the experiments

We analyze the forecast performance of the optimal weights in a series of
Monte Carlo experiments. Data are generated according to (1) and we
consider models with with m “ 2 and m “ 3 states. We set σ2

2 “ 0.25 and
use a range of values for λi and q2.

The states are generated by a Markov chain with transition probabilities
pij “

1
Tπi

, for i ‰ j, and ergodic probabilities πi “ π “ 1{m, @i , where m
is the number of states. The diagonal elements of the transition probability
matrix are pii “ 1´

řm
j“1 pij . This creates Markov chains with relatively high

persistence. The first state is sampled from the ergodic probability vector,
s1 „ Binomialp1,πq and subsequent states are drawn as st „ Binomialp1,ptq
where pt “ Pst´1. We restrict attention to draws of the data that would
be identified as Markov switching models in an application. We therefore
require that at least 10% of the observations occupies each regime and that
regimes are identified empirically in that 1

T

řT
t“1 ξ̂

i
t|T ą 0.05 for all i. This

also ensures identification of the parameters. The estimation is performed
using the EM algorithm (Dempster et al. 1977) as outlined in Hamilton
(1994).

The first set of the Monte Carlo experiments analyzes two state models
with a constant only, that is, k “ 1 and xt “ 1. To investigate the influence
of the sample size T on the results we present results for T “ 50 and T “ 100.
In a second set of experiments, we add an exogenous regressor to the model,
such that xt “ r1, zts

1 where zt „ Np0, σ2
zq and σz “ 1{2 is chosen such

that the centered R2 is of a similar magnitude to the model with a constant

21



only. A third set of experiments considers three state models for T “ 50
and 100, where we restrict the analysis to the simple mean only model for
computational efficiency.

Given the parameter estimates β̂i, P̂, σ̂i and the probability vectors ξ̂t|T ,

ξ̂t|t, ξ̂t|t´1 we construct the usual Markov switching forecast as

ŷMS
T`1 “ x1T`1

m
ÿ

i“1

β̂iξ̂
i
T`1|T

where β̂i is given in (2).
The optimal weights are calculated as outlined in the sections above.

The following notation is used to distinguish the different weights:

• wŝ: weights based on known states, operationalized by substituting
the smoothed probability vector ξ̂t|T for the states as discussed in
Section 3.1.

• wξ̂: weights derived based on state probabilities, with the smoothed

probability vector ξ̂t|T as the probabilities as discussed in Section 3.2.

• wM̂: the weights based on state probabilities derived by directly esti-

mating the matrix M̂ as detailed in Section 3.3.

Using these weights the optimal forecast is constructed as

ŷopt
T`1 “ x1T`1

`

X1WX
˘´1

X1Wy

where W is a diagonal matrix with typical diagonal element wŝ,t, wξ̂,t, or
wM̂,t.

We report ratios of the MSFE of optimally weighted forecasts to that of
standard Markov switching forecasts. Additionally, we separated the results
by the size of the regime difference, λi. Finally, we have seen above that
the performance of the weights wξ̂ depends on the variance of the smoothed
probability vector. Thus, we separate the results based on the normalized
variance of the smoothed probability vector

σ̃2
ξ̂
“

1
T

řT
t“1 ξ̂

piq
t|T p1´ ξ̂

piq
t|T q

1
T

řT
t“1 ξ̂

piq
t|T

1
T

řT
t“1p1´ ξ̂

piq
t|T q

(37)

where i the state which has the minimum normalized variance. Note that in
the case of two states for 1

T

řT
t“1 ξ̂

piq
t|T “

1
T

řT
t“1p1´ ξ̂

piq
t|T q “ 0.5, the measure

σ̃2
ξ̂

is analogous to the regime classification measure (RCM) of Ang and

Bekaert (2002). The Monte Carlo results are from 10,000 replications.
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5.2 Monte Carlo results

The Monte Carlo results for the mean only model with two states are re-
ported in Table 3. The top panel concentrates on models with switches
in mean and homoskedastic errors. The results in Section 3.1 suggest that
forecasts from optimal weights wŝ should improve the most over the forecast
from standard weights when the difference between regimes, λ, is small. In
contrast, the results in Section 3.2 suggest that the opposite should be true
for the forecasts from optimal weights conditional on state probabilities, wξ̂
and wM̂.

The results from the simulation confirm the theoretical findings. For
small λ the forecasts from optimal (plug-in) weights, wŝ, are more precise
than those using standard weights and weights conditional on state prob-
abilities. For larger λ the ordering is reversed: the forecasts from optimal
(plug-in) weights, wŝ, are less precise than those of the standard weights
whereas the weights conditional on state probabilities, wξ̂ and wM̂ are sub-
stantially more precise.

The theoretical results in Section 3.2 suggested that the relative perfor-
mance of the weights based on state probabilities will increase in the uncer-
tainty around the states as the standard weights and the plug-in weights,
wŝ, are compressed towards equal weights whereas the optimal weights re-
tain the shape of the weights as if the states where known. Again, the
results in the table confirm the finding: the results for the plug-in weights
are worse when the states are uncertain as estimation uncertainty increases,
the forecasts from the weights conditional on state probabilities improve.

Finally, our theoretical results suggest that the weights wξ̂ and wM̂ per-
form relatively better when the sample size is larger, whereas the forecasts
from the plug-in weights, wŝ, perform relatively better in smaller samples.
These findings are confirmed when comparing the results for T “ 50 with
those from T “ 100, where the relative MSFE of the plug-in weights is
smaller or equal for small T “ 50 for all values of λ and σ̃2

ξ̂|T
compared to

T “ 100 and the opposite is generally true for the weights conditional on
state probabilities.

The lower panel of Table 3 reports the results for a model with state
dependent mean and variance, where the variance in regime 1 is the same
as before but the variance in regime 2 is doubled. This should mute the
improvements since the average difference in regimes standardized by the
variance decreases. While this decrease is indeed observed, substantial im-
provements remain in the same parameter regions where the weights under
constant variance perform well. The relatively small impact of switches in
variance confirms that switches in variance play a less important role for the
forecast performance of the optimal weights.

Table 4 displays the results for models that include an exogenous regres-
sor. The optimal forecast are obtained by using an asymptotic approxima-
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Table 3: Monte Carlo results: two states, mean only models

T “ 50 T “ 100

λ σ̃2
ξ̂|T

wŝ wξ̂ wM̂ wŝ wξ̂ wM̂

Switches in mean

1 0.0-0.1 0.983 1.004 1.005 0.993 1.005 1.005
0.1-0.2 0.990 1.021 1.024 0.997 1.013 1.022
0.2-0.3 0.996 1.027 1.033 0.999 1.019 1.032
0.3-0.4 0.998 1.028 1.035 1.000 1.024 1.037

2 0.0-0.1 0.995 1.008 1.015 0.999 1.005 1.023
0.1-0.2 1.001 1.005 1.018 1.002 0.994 1.034
0.2-0.3 1.003 0.987 0.999 1.003 0.977 1.004
0.3-0.4 1.004 0.982 0.991 1.004 0.961 0.973

3 0.0-0.1 1.000 0.998 1.013 1.000 0.997 1.022
0.1-0.2 1.005 0.974 0.988 1.005 0.961 0.993
0.2-0.3 1.006 0.957 0.965 1.007 0.920 0.944
0.3-0.4 1.006 0.957 0.956 1.007 0.892 0.912

Switches in mean and variance (q2 “ 2)

1 0.0-0.1 0.985 1.000 1.001 0.992 1.001 1.001
0.1-0.2 0.990 1.009 1.011 0.996 1.009 1.013
0.2-0.3 0.996 1.022 1.027 0.999 1.014 1.021
0.3-0.4 0.998 1.017 1.021 1.001 1.018 1.026

2 0.0-0.1 0.993 1.006 1.008 0.998 1.005 1.019
0.1-0.2 0.999 1.012 1.023 1.002 0.999 1.030
0.2-0.3 1.003 1.001 1.015 1.003 0.992 1.021
0.3-0.4 1.004 0.993 0.999 1.003 0.987 1.003

3 0.0-0.1 0.998 1.003 1.009 1.000 0.999 1.027
0.1-0.2 1.003 0.986 1.010 1.003 0.980 1.025
0.2-0.3 1.007 0.958 0.977 1.007 0.946 0.962
0.3-0.4 1.010 0.942 0.943 1.007 0.920 0.939

Note: The table reports the ratio of the MSFE of the optimal
weights to that of the Markov switching weights. yt “ β1s1t `
β2s2t`pσ1s1t`σ2s2tqεt where εt „ Np0, 1q, σ2

2 “ 0.25, q2 “ σ2
1{σ

2
2 .

Column labels: λ “ pβ2 ´ β1q{σ2, σ̃2
ξ̂|T

is the normalized variance

in of the smoothed probability vector (37). wŝ: forecasts from
weights based on estimated parameters and state probabilities.
wξ̂: forecasts from weights conditional on state probabilities. wM̂

are the weights based on numerically inverting M̂.
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Table 4: Monte Carlo results: two states, models with exoge-
nous regressors

T “ 50 T “ 100

λ σ̃2
ξ̂|T

wŝ wξ̂ wM̂ wŝ wξ̂ wM̂

1 0.0-0.1 0.962 0.988 0.986 0.986 1.002 1.002
0.1-0.2 0.973 1.021 1.001 0.993 1.014 1.018
0.2-0.3 0.991 1.025 1.021 0.999 1.023 1.028
0.3-0.4 0.995 1.030 1.028 1.000 1.026 1.032

2 0.0-0.1 0.990 1.000 1.002 0.999 1.003 1.013
0.1-0.2 1.004 1.008 1.016 1.006 0.997 1.031
0.2-0.3 1.011 0.999 1.013 1.011 0.978 1.009
0.3-0.4 1.012 0.986 0.999 1.019 0.956 0.991

3 0.0-0.1 1.005 1.004 1.013 1.005 1.001 1.027
0.1-0.2 1.018 0.998 1.026 1.020 0.979 1.033
0.2-0.3 1.031 0.983 1.010 1.043 0.935 1.008
0.3-0.4 1.020 0.969 0.991 1.051 0.919 0.958

Note: The table reports the ratio of the MSFE of the optimal
asymptotic weights to that of the Markov switching weights. DGP:
yt “ x1tβ1 ` σ px1tλs2t ` εtq where εt „ NIDp0, 1q. Also σ2 “ 0.25,
β1 “ 1 and xt “ r1, zts where zt „ Np0, 0.25q. For the column
labels see the footnote of Table 3.

tion to the covariance matrix in (36). As the ratio of parameters to estimate
versus the number of observations increases, the performance of the optimal
weights wŝ is less pronounced but the differences are generally small and the
conclusions from experiments with mean only models carry over to the case
of exogenous regressors.

Finally, we investigate forecasts from three state models. The results in
Table 5 suggest that the conclusions from two state models carry over to
three state models. Sizable improvements are made for wξ̂ and wM̂ when

σ̃2
ξ̂

is large and both differences in parameters, λ21 and λ31, are large. These

improvements increase when the sample size increases from T “ 50 to T “
100.

Overall, the findings from the Monte Carlo experiments suggest that op-
timal weights conditional on states work well for small differences in regimes
and small samples. Optimal weights conditional on state probabilities, in
contrast, do well in large sample with large differences in regimes, which
may be the more relevant situation in practical applications. Using weights
that treat states as independent binary variables, wξ̂, avoids the estimation
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Table 5: Monte Carlo results: three states, intercept only models

T “ 50 T “ 100

tλ31, λ21u σ̃2
ξ̂|T

wŝ wξ̂ wM̂ wŝ wξ̂ wM̂

t2, 1u 0.0-0.1 0.996 1.029 1.026 0.998 1.025 1.027
0.1-0.2 0.997 1.031 1.035 0.999 1.027 1.046
0.2-0.3 0.999 1.028 1.035 1.000 1.012 1.027
0.3-0.4 1.001 1.013 1.017 1.001 1.007 1.018

t3, 1u 0.0-0.1 0.998 1.016 1.014 0.999 1.011 1.026
0.1-0.2 1.000 1.008 1.013 1.001 0.998 1.013
0.2-0.3 1.002 0.990 0.993 1.002 0.971 0.986
0.3-0.4 1.004 0.969 0.966 1.003 0.939 0.953

t4, 2u 0.0-0.1 0.999 1.011 1.011 1.000 1.005 1.019
0.1-0.2 1.001 0.997 0.999 1.001 0.987 1.007
0.2-0.3 1.003 0.973 0.971 1.003 0.943 0.963
0.3-0.4 1.003 0.954 0.951 1.004 0.882 0.876

Note: The table reports the ratio of the MSFE of the optimal weights to
that of the Markov switching weights. For details see Table 3.

uncertainty around covariances of the state, and in many settings leads to
the most precise forecasts. Estimating the full matrix of second moments,
M, in the construction of the optimal weights, wM̂, can, however, improve
forecasts when the difference between regimes is large while the uncertainty
about regimes remains large, too.

6 Application to US GNP

The US business cycle, which was analyzed by Hamilton (1989), arguably
remains one of the most prominent application of Markov switching models.
Different variants of such models have been used to model US GNP growth
such as in the articles by Clements and Krolzig (1998) and Krolzig (1997,
2000). These authors also show that the Markov switching model is fre-
quently outperformed in terms of MSFE by a simple linear AR model. We
use a pseudo-out-of-sample forecast exercise to investigate whether optimal
weights improve the forecast accuracy of Markov switching models for US
GNP, and whether using optimal weights improves the forecast accuracy of
Markov switching models over that of linear alternatives.

The model by Hamilton (1989) is an example of a Markov Switching
in mean model with non-switching autoregressive regressors. This class of
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models

yt “ βst `

p
ÿ

i“1

φipyt´i ´ βst´iq ` σεt

is denoted as MSM(m)-ARpp) by Krolzig (1997), where Hamilton’s model
takes m “ 2 and p “ 4. Here, yt depends on the current state and on
the previous p states. If, in addition, the model contains a state dependent
variance, σst , it is denoted as a MSMH(m)-AR(p) model.

Clements and Krolzig (1998) find that a three state model with switching
intercept instead of switching mean and a state dependent variance does well
in terms of business cycle description and forecast performance. This class
of models

yt “ βst `

p
ÿ

i“1

φiyt´i ` σstεt

is denoted by MSIH(m)-AR(p) by Krolzig (1997) and the model in Clements
and Krolzig (1998) takes m “ 3 and p “ 4.

Note, that both models fit the framework of the intercept only model
by moving the state-independent autoregressive component to the left hand
side. On the right hand side only the constant remains, and we can use
the finite sample expressions derived for the intercept only model. We es-
timate the models using the EM algorithm suggested by Hamilton (1994)
with the extensions discussed by Krolzig (1997). We have investigated the
performance of optimal weights for such dynamic models in Monte Carlo
experiments with details provided in Appendix B. The results indicate that
the insights gained from the intercept only model in Section 5 carry over to
dynamic models.

In this exercise, we focus on pseudo-out-of-sample forecasts generated
by a range of candidate Markov switching models: MSM(m)-AR(p) and
MSMH(m)-AR(p) models with m “ 2 and p “ 0, 1, 2, 3, 4 and m “ 3 with
p “ 1, 2, and MSI (m)-AR(p) and MSIH(m)-AR(p) models with m “ 2, 3
and p “ 0, 1, 2, 3, 4. We construct expanding window forecasts where for
each forecast all models are re-estimated to include all available data at
that point in time. We select the Markov switching model that, based
on standard weights, delivers the lowest MSFE in a cross-validation sample.
Using this model, we then compare the pseudo out-of-sample forecasts using
standard weights and optimal weights.

We report the ratio of the MSFE of forecasts from optimal weights rela-
tive to those from standard weights together with the Diebold and Mariano
(1995) test statistic of equal predictive accuracy. Additionally, we calculate
the components of MSFE: the squared biases and variances. We report the
differences between the squared bias of the standard weights forecasts and
that of the optimal weight forecasts relative to the MSFE of the standard
weight forecast, and the differences between the variance of the standard

27



weights forecasts and that of the optimal weight forecasts relative to the
MSFE of the standard weight forecast.

The data are (log changes in) US GNP series from 1947Q1 to 2014Q1,
which we obtained from the Federal Reserve Economic Data (FRED). The
data are seasonally adjusted. In total, the series consists of 269 observations.
After accounting for the necessary pre-sample, we start the estimation sam-
ple in 1948Q2.

The out-of-sample forecast period is 1983Q2-2014Q1, which amounts to
124 observations and ensures that throughout the forecasting exercise all
models are estimated on at least 100 observations. We start evaluating fore-
casts for model selection purposes with a training period 1973Q2-1983Q1
(40 observations). The model that has the minimum MSFE over this pe-
riod (using standard weights) is selected as the forecasting model for the
observation 1983Q2, and forecasts using the different weights are made with
this model. In this way, no information is used that is not available to re-
searchers in real time. Next, we add the next period to our estimation and
cross-validation sample, select the minimum MSFE model, and construct the
next forecast. Remarkably, in our application, the MSM(3)-AR(1) model is
selected throughout.

As mentioned above, the beginning of the out-of-sample forecast period is
chosen such that a sufficient amount of observations is available to estimate
all Markov switching models. Still, we need to ensure that our results do
not critically depend on this choice. In a second step, we therefore check the
robustness of our results using the forecast evaluation measures proposed by
Rossi and Inoue (2012).

The forecasting performances of the standard and optimal weights are
reported in Table 6. The column with heading wMS reports the MSFE of
the best Markov switching model using standard weights. The next three
columns report the ratio of MSFE of the optimal weights forecast to the
standard weights forecast for the same model. The results in the first line,
which are over the full forecast period, show that optimal weights condi-
tional on states, wŝ, do not improve forecasts but that, in contrast, weights
conditional on state probabilities, wξ̂ and wM̂, substantially improve the
forecast performance over standard weights and that these improvements
are significant. The most precise forecasts result from using wM̂. The three
state models have an average estimated differences in mean (scaled by the
standard deviation) λ̂21 “ 2.28 and λ̂31 “ 4.23. The average minimum nor-
malized variance of the smoothed probability vector is σ̃2

ξ̂|T
“ 0.20. The

size of the improvements over the Markov switching forecast is close to the
improvements found in the Monte Carlo simulation for three state models
as presented in Table 5.

It is interesting to also compare forecast performance in subperiods. In
the first subperiod, 1983Q2–1993Q1, forecasts based on the optimal weights
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Table 6: GNP forecasts: forecasting performance

wMS wŝ wξ̂ wM̂

1983Q2-2014Q1 0.367 1.001 0.970˚˚ 0.959˚˚˚

Subperiods

1983Q2-1993Q1 0.225 1.002 0.875˚˚ 0.898˚

1993Q2-2003Q1 0.306 1.000 1.021 0.989
2003Q2-2014Q1 0.553 1.000 0.980˚ 0.965˚˚

Full sample: 1983Q2-2014Q1

Square bias 0.008 0.000 0.003 0.005
Variance 0.359 ´0.001 0.028 0.037

Note: The second column in the top two panels of the table
reports the MSFE based on the best Markov switching model
with standard weights. The remaining columns of the table
reports the relative MSFE of the optimal weights compared
with the Markov switching weights. Asterisks denote signifi-
cance at the 10%, 5%, and 1% level using the Diebold-Mariano
test statistic. The second column of the last panel reports the
square bias and variance of the best Markov switching model
with standard weights. The remaining columns give the dif-
ferences in squared biases and variances between the standard
weights and optimal weights forecasts relative to the MSFE of
the Markov switching model with standard weights. Positive
numbers indicate lower bias/variance.

conditional on state probabilities, wξ̂ and wM̂, improve significantly over

the standard weights with gains of more than 10% in forecast accuracy.
Forecasts based on the plug-in weights, wŝ, in contrast, cannot improve on
the standard MS forecasts. In the second subperiod, 1993Q2–2003Q1, which
largely covers the great moderation, only wM̂ offers a modest improvement.
In the last subperiod, 2003Q2–2014Q1, again all optimal weights conditional
on the state probabilities lead to more precise forecasts than the standard
weights and these improvements are again significant.

The optimal weights trade off bias and variance of the forecasts, and
it is therefore interesting to consider the magnitude of the bias incurred.
The bottom panel of Table 6 reports the squared bias and variance of the
forecasts from the standard weights forecasts in the second column and in
the subsequent columns the difference in squared biases and variances of the
standard weights and the optimal weights forecasts relative to the MSFE of
the standard weights forecasts. It can be seen that the squared bias of the
standard weights forecast is very small and only a fraction of the size of
the variance. The reduction in MSFE that the optimal weights (based on
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Table 7: GNP forecasts: comparison to linear models

ARdyn wMS wŝ wξ̂ wM̂

1983Q2-2014Q1 0.368 0.999 1.000 0.970 0.958

Subperiods

1983Q2-1993Q1 0.265 0.849˚˚ 0.851˚˚ 0.743˚˚ 0.763˚˚

1993Q2-2003Q1 0.280 1.091 1.091 1.114 1.080
2003Q2-2014Q1 0.540 1.023 1.023 1.003 0.988

Note: The second column contains the MSFE of the best linear model.
The remaining columns contain the MSFE of the best Markov switching
model with different weights relative to that of the linear model. The
best Markov switching model is selected based on standard weights.
The linear model is the AR(1) model for the first 69 forecasts and
AR(2) for the final 55 forecasts.

state probabilities) achieve is therefore for the most part via a reduction in
variance. Yet, in this application there appears to be no trade-off in bias
as the biases of the optimal weights forecasts are no larger and typically
smaller than that of the standard weights forecasts. It appears that the
model uncertainty around the Markov switching model induces a bias that
the optimal weights mitigate, which leads to improvements of the forecasts
in bias and variance.

Having established that the optimal weights improve on the Markov
switching model with standard weights, the question remains how the opti-
mal weights forecasts compare to forecasts from linear models, which here
are AR(p) models with p “ 1, 2, 3, 4 and a mean only model. We select the
best linear model based on the historic forecast performance in line with
the model selection for the Markov switching model. The AR(1) model is
selected for the first 69 forecasts and the AR(2) model for the remaining
forecasts. The resulting MSFE and relative performance of the different
weighting scheme for the selected Markov switching model are reported in
Table 7. Over the entire forecast period, the performance of the linear mod-
els is very similar to the Markov switching model with standard weights.
The same is true for the weights conditional on states. This contrasts with
the forecast based on optimal weights conditional on state probabilities that
substantially beat the linear models, even if for the full forecast sample the
difference is not significant at conventional levels.

The forecasts over the three different subperiods reveal that in the first
subperiod, all Markov switching forecasts significantly improve on the linear
forecasts. The largest gains are made using the optimal weights conditional
on the state probabilities. In the middle subperiod no Markov switching
forecast is more precise than the linear model. In the final subperiod opti-
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Table 8: Rossi and Inoue test of forecast
accuracy

wMS wŝ wξ̂ wM̂

Test against MS weights

AT 0.585 -0.356 -0.910
RT -0.646 -1.803 -2.342˚˚

Test against AR(1)

AT -0.223 -0.222 -0.208 -0.546
RT -0.954 -0.951 -1.071 -1.575

Test against AR(2)

AT 0.372 0.375 0.261 -0.027
RT -0.469 -0.477 -0.621 -0.928

Note: The beginning of the out-of-sample
forecast evaluation period is varied between
rµT, p1 ´ µqT s with µ “ 0.35 and T “ 264.
AT denotes the average and RT the supremum
of the Diebold-Mariano test statistics over the
range of forecast periods. Asterisks denote sig-
nificance at the 10%, 5%, and 1% level.

mal weights, wM̂ again yield forecasts with a lower MSFE than the linear
model. Comparing these results to those in Table 6, suggests that the opti-
mal weights improve forecasts over the standard weights the most when the
data exhibit strong switching behavior. This ties in with the results from
our theory in two ways. First, we showed above that the weights conditional
on the states are tending towards equal weighting, that is in the direction
of the linear models, whereas the optimal weights derived conditional on
state probabilities emphasize the Markov switching nature of the data. Sec-
ond, we demonstrated that, in a three state model, the optimal weights are
around 1{T when the future regime is the middle regime. This appears to
be a distinguish feature of the subperiods: in the first subperiod the middle
regime has an average probability of 0.65 whereas in the second and third
subperiods it given a probability of 0.83 and 0.84. Hence, the linear model
is more difficult to beat in the last two subperiods as for many forecasts it
is close to the optimal forecasting model.

In order to check the robustness of our results to the choice of forecast
sample, we additionally use the forecast accuracy tests suggested by Rossi
and Inoue (2012). The tests require the calculation of Diebold-Mariano test
statistics over a range of possible out-of-sample forecast windows. From
these different windows, two tests can be constructed: first, the AT test,
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which is the average of the Diebold-Mariano test statistics, and, second,
the RT test, which is the supremum of the Diebold-Mariano test statistics.
The application of these tests comes with two caveats in our application.
First, the relative short first estimation window implied by these tests is
problematic as various switches of the Markov chain are required for the
estimation of Markov switching models. For the test by Rossi and Inoue
(2012), the beginning of the out-of-sample forecast evaluation period is var-
ied over the interval rµT, p1 ´ µqT s and we set µ to the maximum of 0.35.
In contrast, in the baseline application above, the shortest estimation sam-
ple is 0.53T . Early forecasts for the Rossi and Inoue test may suffer as a
result of a short estimation window. Second, as a further consequence of
the shortened estimation sample, we cannot use cross-validation as model
selection procedure and therefore consider only the MSM(3)-AR(1) model,
which has been selected in our baseline forecast procedure throughout, and
for the linear model we use the AR(1) and AR(2) models, which are the
models selected in the baseline forecasting exercise.

Table 8 reports the test statistics and associated significance levels. The
top panel reports the test statistics of the optimal weights forecasts against
the standard weights forecasts. It can be seen that the signs of the test
statistics are as expected and that the wM̂ weights provide significant im-
provements on the standard weights according to the RT test. The lower
two panels of Table 8 report the test statistics when the MSM(3)-AR(1)
model is tested against a simple AR(1) and AR(2) model. For the AR(1)
model the signs are as expected, although the test statistics do not exceed
the critical values reported in Rossi and Inoue (2012). For the AR(2) model
the AT test statistic for wM̂ weights remains negative. For these weights the
largest negative RT test statistic is observed, which it is not significant at
conventional levels. This reflects the fact that the linear model is a close ap-
proximation to the optimal weights Markov switching model as the forecast
sample is dominated by observations that are most likely from the middle
regime.

7 Conclusion

In this paper, we have derived optimal forecasts for Markov switching mod-
els and analyzed the effect of uncertainty around states on forecasts based
on optimal weights. The importance of uncertainty around the timing of
switches between states is highlighted in the comparison of forecasts from
weights conditional on the states of the Markov chain and those when the
states are not known. The optimal weights for known states share the prop-
erties of the weights derived in Pesaran et al. (2013) and are asymptotically
identical to the Markov switching weights. Improvements in forecasting
performance are found when the ratio of the number of observations to the
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number of estimated parameters is small. This contrasts with the opti-
mal weights for unknown states that are asymptotically different from the
Markov switching weights and potential improvements in forecasting accu-
racy can be considerable for large differences in parameters even in large
samples.

The results from theory and the application show that optimal fore-
casts can differ substantially from standard MS forecasts. Optimal weights
emphasize the Markov switching nature of the DGP more than standard
weights do. However, in the three state case, the optimal weights for fore-
casts in the middle regime lead to weights that effectively ignore the Markov
switching nature of the data. This is the case for the GNP forecasts from
the great moderation where the vast majority of observations are from the
middle regime. This explains the difficulty of Markov switching forecasts
to beat linear models, as the optimal forecast from the Markov switching
model is essentially the same as the forecast from the linear model.

For practitioners two messages emerge. First, when the observation in
the forecast period could likely be from any regime of the Markov switching
model, optimal weights conditional on state probabilities will substantially
improve forecasts. When the size of the switches is moderate or regime
estimates precise, weights that ignore the covariances of the states are more
efficient as the additional estimation uncertainty introduced by estimating
the covariances of the states dominates the forecasts. When switches are
large yet state remain uncertain using the full second moment matrix of
the Markov chain leads to more precise forecasts. However, the difference
between the two optimal weights is small compared to the overall gains
in forecast accuracy. Second, when one expects to forecast predominantly
observations from the middle regime in a three state model, using a linear
model will lead to forecasts that are effectively the optimal forecasts from
the Markov switching model but with the benefit of substantially reduced
estimation uncertainty.

A Mathematical details

A.1 Derivations conditional on states

A.1.1 Weights for two-state Markov switching model

In order to derive weights (10)–(13), define λ “ β2´β1
σ2

and q “ σ1
σ2

, π1 “

1
T

řT
t“1 s1t, and π2 “

1
T

řT
t“1 s2t. Then we have

M “ Q` S̃1λλ1S̃

“ q2S1 ` S2 ` λ
2s2s

1
2
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where Si is a TˆT diagonal matrix with typical t, t-element si,t. The inverse
of M is

M´1 “ pq2S1 ` S2q
´1 ´

λ2pq2S1 ` S2q
´1s2s

1
2pq

2S1 ` S2q
´1

1` λ2s12pq
2S1 ` S2q

´1s2

“
1

q2
S1 ` S2 ´

λ2p 1
q2

S1 ` S2qs2s
1
2p

1
q2

S1 ` S2q

1` λ2s12p
1
q2

S1 ` S2qs2

“
1

q2
S1 ` S2 ´

λ2s2s
1
2

1` λ2Tπ2

The weights are given by

w “ λ2M´1s2s2,T`1 `
M´1ι

ι1M´1ι

`

1´ λ2ι1M´1s2s2,T`1

˘

The various components needed to calculate the weights are given by

M´1s2 “ s2 ´
λ2Tπ2

1` λ2Tπ2
s2

“
1

1` λ2Tπ2
s2

M´1ι “
1

q2
s1 ` s2 ´

λ2Tπ2

1` λ2Tπ2
s2

“
s1p1` λ

2Tπ2q ` q
2s2

q2p1` λ2Tπ2q

and

ι1M´1s2 “
Tπ2

1` λ2Tπ2
, ι1M´1ι “ T

π1 ` λ
2Tπ1π2 ` q

2π2

q2p1` λ2Tπ2q

This yields the weights

w “ λ2 1

1` λ2Tπ2
s2s2,T`1 `

1

T

s1p1` λ
2Tπ2q ` q

2s2

π2q2 ` π1p1` Tπ2λ2q

ˆ

1´ λ2 Tπ2s2,T`1

1` λ2Tπ2

˙

“
1

1` λ2Tπ2

"

s2s2,T`1 `
1

T

s1p1` λ
2Tπ2q ` q

2s2

π2q2 ` π1p1` Tπ2λ2q

“

1` λ2Tπ2p1´ s2,T`1q
‰

*

Suppose s2,T`1 “ s2,t “ 1, then

w22 “
1

1` λ2Tπ2

ˆ

λ2 `
1

T

q2

π2q2 ` π1p1` Tπ2λ2q

˙

“
1

1` λ2Tπ2

1

T

1

π2q2 ` π1p1` Tπ2λ2q

“

q2p1` λ2Tπ2q ` λ
2Tπ1p1` λ

2Tπ2q
‰

“
1

T

q2 ` λ2Tπ1

π2q2 ` π1p1` Tπ2λ2q
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when s2,T`1 “ 1, s2,t “ 0, then

w21 “
1

1` λ2Tπ2

ˆ

1

T

1` λ2Tπ2

π2q2 ` π1p1` Tπ2λ2q

˙

“
1

T

1

π2q2 ` π1p1` Tπ2λ2q

when s2,T`1 “ 0, s2,t “ 1, then

w12 “
1

T

1

1` λ2Tπ2

q2p1` λ2Tπ2q

π2q2 ` π1p1` Tπ2λ2q

“
1

T

q2

π2q2 ` π1p1` Tπ2λ2q

finally, when s2,T`1 “ 0, s2,t “ 0, then

w11 “
1

T

1

1` λ2Tπ2

p1` λ2Tπ2q
2

π2q2 ` π1p1` Tπ2λ2q

“
1

T

1` λ2Tπ2

π2q2 ` π1p1` Tπ2λ2q

In order to show the symmetry of the weights, consider the definition of
λ and q conditional on the regime si,T`1. If s2,T`1 “ 1, define λ “ β2´β1

σ2
and

q “ σ1
σ2

, but if s1,T`1 “ 1, define λ˚ “
β1´β2
σ1

and q˚ “
σ2
σ1

. Then, λ2 “ λ2
˚{q

2
˚

and we have for w12 and w11

w12 “
1

T

q2

π2q2 ` π1p1` Tπ2λ2q

“
1

T

1{q2
˚

π2{q2
˚ ` π1p1` 1{q2

˚Tπ2λ2
˚q

“
1

T

1

π1q2
˚ ` π2p1` Tπ1λ2

˚q

w11 “
1

T

1` λ2Tπ2

π2q2 ` π1p1` Tπ2λ2q

“
1

T

1` 1{q2
˚λ

2
˚Tπ2

π2{q2
˚ ` π1p1` 1{q2

˚Tπ2λ2
˚q

“
1

T

q2
˚ ` λ

2
˚Tπ2

π1q2
˚ ` π2p1` Tπ1λ2

˚q

The symmetry of the weights is a natural consequence of the fact that the
Markov Switching model is invariant under a relabeling of the states.
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A.1.2 Weights and MSFE for m-state Markov switching model

To derive weights for an m-state Markov switching model, we will concen-
trate on sk,T`1 “ 1 as we have shown above that the weights are symmetric.
In this case, define λi “ pβi´ βkq{σk and qi “ σi{σk. The model is given by

yt “
m
ÿ

i“1

βisit `
m
ÿ

i“1

σisitεt

“ βk `
m
ÿ

i“1

pβi ´ βkqsit `
m
ÿ

i“1

σisitεt

“ σk

˜

βk
σk
`

m
ÿ

i“1

λisit `
m
ÿ

i“1

qisitεt

¸

For the observation at T ` 1 we have

1

σk
yT`1 “

βk
σk
` εT`1

The forecast error is

1

σk
pyT`1 ´w1yq “ εT`1 ´

m
ÿ

i“1

λiw
1si ´

m
ÿ

i“1

qiw
1Siε

Squaring and taking expectations gives

E
“

σ´2
k pyT`1 ´w1yq2

‰

“ 1`
m
ÿ

i“1

m
ÿ

j“1

λiλjw
1sis

1
jw `

m
ÿ

i“1

q2
iwSiw

Implementing the constraint
řT
t“1wt “ 1 by a Lagrange multiplier and

taking the derivative gives

w “

˜

m
ÿ

i“1

m
ÿ

j“1

λiλjw
1sis

1
j `

m
ÿ

i“1

q2
iwSi

¸´1

p´θιq

“ ´θM´1ι

(38)

The inverse can be expressed analytically through the Sherman Morrison
formula as

M´1 “

m
ÿ

i“1

1

q2
i

Si ´

´

řm
i“1

1
q2i

si

¯´

řm
i“1

řm
j“1 λiλjsis

1
j

¯´

řm
i“1

1
q2i

si

¯

1`
´

řm
j“1 λjs

1
j

¯´

řm
i“1

1
q2i

si

¯

p
řm
i“1 λjsiq

“

m
ÿ

i“1

1

q2
i

Si ´

řm
i“1

řm
j“1

λi
q2i

λj
q2j

sis
1
j

1` T
řm
i“1

λ2i
q2i
πi
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Multiplying with ι as in equation (38) gives

M´1ι “
m
ÿ

i“1

1

q2
i

si ´
T
řm
i“1

řm
j“1

λi
q2i

λj
q2j
πjsi

1` T
řm
i“1

λ2i
q2i
πi

Since the weights should sum up to one, we have

ι1w “

¨

˝T
m
ÿ

i“1

1

q2
i

πi ´
T 2

řm
i“1

řm
j“1

λi
q2i

λj
q2j
πjπi

1` T
řm
i“1

λ2i
q2i
πi

˛

‚p´θq

“ 1

which gives

θ “
1` T

řm
j“1

λ2i
q2i
πi

T

«

m
ÿ

i“1

1

q2
i

πi ` T
m
ÿ

i“1

m
ÿ

j“1

˜

1

q2
i

λj
q2
j

πiπj ´
λi
q2
i

λj
q2
j

πjπi

¸ff´1

“

1` T
řm
j“1

λ2i
q2i
πi

T

«

m
ÿ

i“1

1

q2
i

πi ` T
m
ÿ

i“1

m
ÿ

j“1

1

q2
i

1

q2
j

πiπjλjpλj ´ λiq

ff´1

The weights are then given by

w “
1

T

řm
i“1

1
q2i

si ` T
řm
i“1

řm
j“1

1
q2i

1
q2j
πjλjpλj ´ λiqsi

řm
i“1

1
q2i
πi ` T

řm
i“1

řm
j“1

1
q2i

1
q2j
πiπjλjpλj ´ λiq

So that if slt “ 1 the weight at time t is

wt “
1

T

1
q2l
` T

řm
j“1

1
q2l

1
q2j
πjλjpλj ´ λlq

řm
i“1

1
q2i
πi ` T

řm
i“1

řm
j“1

1
q2i

1
q2j
πiπjλjpλj ´ λiq

The MSFE is easy to derive by noting that we can substitute the first order
condition for the weights

E
“

σ´2
k pyT`1 ´w1yq2

‰

“ 1`
m
ÿ

i“1

m
ÿ

j“1

λiλjw
1sis

1
jw `

m
ÿ

i“1

q2
iwSiw

“ 1´ θ

“ 1` wkk

where wkk is the weight when sk,T`1 “ skt “ 1.
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A.2 Derivations conditional on state probabilities

A.2.1 Large T approximation for optimal weights

Rewrite (22) as

wt “
1

T

dtr
1
T ` λ

2 1
T

řT
t1“1 dt1pξ2,T`1 ´ ξ2t1qpξ2t ´ ξ2t1qs

1
T

´

1
T

řT
t1“1 dt1

¯

` λ2

„

1
T

řT
t1“1 dt1ξ

2
2t1

1
T

řT
t1“1 dt1 ´

´

1
T

řT
t1“1 dt1ξ2t1

¯2


(39)
where

dt “
“

λ2ξ2tp1´ ξ2tq ` q
2 ` p1´ q2qξ2t

‰´1

To perform the large sample approximation we need to establish that 1
T

řT
t“1 dt ă

8, 1
T

řT
t“1 ξ2tdt ă 8 and 1

T

řT
t“1 ξ

2
2tdt ă 8. Proving the first of these re-

lations implies the other two, since 0 ď ξ2t ď 1. Define at “
1
dt

. We then
need to prove that at ą 0. The only scenario where at “ 0 is when ξ2t “ 0
and q2 “ 0, so the only restriction that we must impose to obtain at ą 0 is
that q2 ą 0. Then

1

T

T
ÿ

t“1

dt “
1

T

T
ÿ

t“1

1

at
ď

1

T
T

1

amin
“

1

amin
ă 8

where amin is the minimum value of at over t “ 1, 2, . . . , T .
Denote d̄ “ 1

T

řT
t“1 dt,

Ďdξ “ 1
T

řT
t“1 dtξ2t, and Ďdξ2 “ 1

T

řT
t“1 dtξ

2
2t ,

then (39) can be written as

wt “
1

T
dt

»

–

1
T

1
T d̄` λ

2
´

Ďdξ2d̄´Ďdξ
2
¯ `

λ2pξ2tξ2,T`1d̄´ ξ2t
Ďdξ ´ ξ2,T`1

Ďdξ ` Ďdξ2q

1
T d̄` λ

2
´

Ďdξ2d̄´Ďdξ
2
¯

fi

fl

“
1

T
dt

»

–

1

T

1

λ2
´

Ďdξ2d̄´Ďdξ
2
¯

1

1` θ
T

`
λ2pξ2tξ2,T`1d̄´ ξ2t

Ďdξ ´ ξ2,T`1
Ďdξ ` Ďdξ2q

λ2
´

Ďdξ2d̄´Ďdξ
2
¯

1

1` θ
T

fi

fl

“
1

T
dt
λ2pξ2tξ2,T`1d̄´ ξ2t

Ďdξ ´ ξ2,T`1
Ďdξ ` Ďdξ2q

λ2
´

Ďdξ2d̄´Ďdξ
2
¯ `O

`

T´2
˘

where θ “ d̄

λ2
´

Ědξ2d̄´Ďdξ
2
¯ “ 1

λ2
řT

t“1 d̃tpξ2t´
1
T

řT
t1“1

d̃t1ξ2t1 q
2

where d̃t “ dt{
ř

t1 dt1 .

The numerator is nonzero unless for the trivial case when ξ2t is constant for
all t. Using this and the result that d̄, Ďdξ and Ďdξ2 are finite for any T proves
that we can apply the expansion in terms of θ{T . Dividing wt by

řT
t“1 dt

yields (24).
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A.2.2 Weights and MSFE for standard Markov switching model

The Markov switching weights can be written as

wMS “
ξ1,T`1ξ1
řT
t“1 ξ1t

`
ξ2,T`1ξ2
řT
t“1 ξ2t

“
1

T

ξ2,T`1ξ2

ξ̄2
`

1

T

p1´ ξ2,T`1qpι´ ξ2q

p1´ ξ̄2q

“
1

T

1

ξ̄2p1´ ξ̄2q
pξ2,T`1ξ2p1´ ξ̄2 ` ξ̄2q ` ξ̄2ι´ ξ̄2ξ2,T`1ι´ ξ̄2ξ2q

“
1

T

1

ξ̄2p1´ ξ̄2q
pξ2,T`1 ´ ξ̄2qpξ2 ´ ξ̄2ιq ` ξ̄2p1´ ξ̄2q

“
1

T
`

1

T

pξ2,T`1 ´ ξ̄2qpξ2 ´ ξ̄2ιq

ξ̄2p1´ ξ̄2q
(40)

For a general vector of weights w, subject to
řT
t“1wt “ 1, and assuming

a constant error variance, we have the following MSFE

Erσ´2e2
T`1s “ 1` λ2ξ2,T`1 `w1Mw ´ 2λ2w1ξξ2,T`1

“ 1` λ2ξ2,T`1 ` λ
2pw1ξq2 `w1Dw ´ 2λ2w1ξξ2,T`1

(41)

where D “ p1` λ2σ2
ξ qI.

Using (40) we have that

w1
MSξ “ ξ̄2 `

ξ2,T`1 ´ ξ̄2

p1´ ξ̄2qξ̄2

˜

1

T

T
ÿ

t“1

ξ2
t ´ T ξ̄

2
2

¸

“ ξ̄2 `
ξ2,T`1 ´ ξ̄2

p1´ ξ̄2qξ̄2

“

ξ̄2p1´ ξ̄2q ´ σ
2
ξ

‰

“ ξ2,T`1 ´
ξ2,T`1 ´ ξ̄2

ξ̄2p1´ ξ̄2q
σ2
ξ

where we have used (25), and

w1
MSDwMS “ p1` λ

2σ2
ξ q

"

1

T
`
pξ2,T`1 ´ ξ̄2q

2

T ξ̄2
2p1´ ξ̄2q

2

“

ξ̄2p1´ ξ̄2q ´ σ
2
ξ

‰

*
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So that the MSFE is

Erσ´2e2
T`1sMS “ 1` λ2ξ2,T`1 ` λ

2

«

ξ2
2,T`1 ´ 2

ξ2,T`1pξ2,T`1 ´ ξ̄2qσ
2
ξ

ξ̄2p1´ ξ̄2q
`
pξ2,T`1 ´ ξ̄2q

2σ4
ξ

ξ̄2
2p1´ ξ̄2q

2

ff

´ λ2

«

2ξ2
2,T`1 ´ 2

ξ2,T`1pξ2,T`1 ´ ξ̄2qσ
2
ξ

ξ̄2p1´ ξ̄2q

ff

` p1` λ2σ2
ξ q

1

T

"

1`
pξ2,T`1 ´ ξ̄2q

2

ξ̄2
2p1´ ξ̄2q

2

“

ξ̄2p1´ ξ̄2q ´ σ
2
ξ

‰

*

“ 1` λ2ξ2,T`1p1´ ξ2,T`1q ` λ
2
pξ2,T`1 ´ ξ̄2q

2σ4
ξ

ξ̄2
2p1´ ξ̄2q

2

` p1` λ2σ2
ξ q

1

T

"

1`
pξ2,T`1 ´ ξ̄2q

2

ξ̄2
2p1´ ξ̄2q

2

“

ξ̄2p1´ ξ̄2q ´ σ
2
ξ

‰

*

“ 1` λ2ξ2,T`1p1´ ξ2,T`1q ` p1` λ
2σ2
ξ q

1

T

`
pξ2,T`1 ´ ξ̄2q

2

ξ̄2
2p1´ ξ̄2q

2

"

λ2σ4
ξ ` p1` λ

2σ2
ξ q

1

T

“

ξ̄2p1´ ξ̄2q ´ σ
2
ξ

‰

*

A.2.3 MSFE for Markov switching model using optimal weights

Equation (23) for an arbitrary number of states is derived as follows

Erσ´2e2
T`1s “ pι

1M´1ιq´1p1´ ι1M´1ξ̃ξ̃T`1q
2`

`

m
ÿ

j“2

λ2
jξj,T`1 ´ ξ̃

2
T`1ξ̃

1
M´1ξ̃ `

m
ÿ

j“1

q2
j ξj,T`1

“
1` ξ̃

1
D´1ξ̃

ι1D´1ιp1` ξ̃
1
D´1ξ̃q ´ pιD´1ξ̃q2

«

1`
ξ̃2
T`1pι

1D´1ξ̃q2

p1` ξ̃
1
D´1ξ̃q2

`

´2
ξ̃T`1ι

1D´1ξ̃

1` ξ̃
1
D´1ξ̃

ff

` ξ̃2
T`1 ´

ξ̃2
T`1ξ̃

1
D´1ξ̃

1` ξ̃
1
D´1ξ̃

`
1

dT`1

“
1`

řT
t“1 ξ̃

2
t ´ 2ξ̃T`1

řT
t“1 dtξ̃t ` ξ̃

2
T`1

řT
t“1 dt

řT
t“1 dtp1`

řT
t1“1 dt1 ξ̃

2
t1q ´ p

řT
t“1 dtξ̃tq

2
`

1

dT`1

“
wT`1

dT`1
`

1

dT`1

“
1

dT`1
p1` wT`1q

A.2.4 Derivation of (33)

To save on notation, in the following we use ppsjt|si,t`m,ΩT q to write ppsjt “
1|si,t`m “ 1,ΩT q. To derive (33), take for example a three state model and
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calculate

ppsjt|si,t`3,ΩT q “

2
ÿ

k“0

ppsjt|sk,t`1, si,t`3,ΩT qppsk,t`1|si,t`3,ΩT q

“

2
ÿ

k“0

ppsjt|sk,t`1,Ωtq

2
ÿ

l“0

ppsk,t`1|sl,t`2,Ωt`1qppsl,t`2|si,t`3,Ωt`2q

“

2
ÿ

k“0

pjkppsjt|Ωtq

ppsk,t`1|Ωtq

2
ÿ

l“0

pklppsk,t`1|Ωt`1q

ppsl,t`2|Ωt`1q

plippsl,t`2|Ωt`2q

ppsi,t`3|Ωt`2q

“
ppsjt|Ωtq

ppsi,t`3|Ωt`2q

2
ÿ

k“0

2
ÿ

l“0

pjka
k
t`1pkla

l
t`2pli

“
ppsjt|Ωtq

ppsi,t`3|Ωt`2q

`

P1At`1P
1At`2P

1
˘

j,i

where akt`1 “
ppsk,t`1“1|Ωt`1q

ppsk,t`1“1|Ωtq
. On the second line we use that the regime st

depends on future observations only through st`1.

B Monte Carlo results for MSI and MSM models

Table 9 presents Monte Carlo results for the models that are frequently used
in empirical applications. These models are the m-state Markov switching
in intercept (MSI) and Markov switching in mean (MSM) models which
include p lags of the dependent variable. We analyze the performance of the
optimal weights for an MSI(2)-AR(2) and MSM(2)-AR(2) model. For both
models, Table 9 shows that the improvements by using optimal weights are
consistent with the results for the Markov switching model with no lagged
dependent variables. However, the additional parameter estimates imply
noise that leads to slightly less pronounced differences in MSFE compared
to the intercept only model.
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Table 9: Monte Carlo results: MSI and MSM models

T “ 50 T “ 100

λ σ̃2
ξ̂|T

wŝ wξ̂ wM̂ wŝ wξ̂ wM̂

MSI

1 0.0-0.1 0.988 1.008 1.002 0.994 1.006 1.006
0.1-0.2 0.994 1.019 1.016 0.997 1.016 1.020
0.2-0.3 0.997 1.018 1.018 0.999 1.017 1.026

2 0.0-0.1 0.997 1.005 1.006 0.999 1.003 1.020
0.1-0.2 1.000 1.005 1.017 1.002 0.994 1.030
0.2-0.3 1.003 0.993 1.007 1.003 0.985 1.018

3 0.0-0.1 1.000 0.999 1.004 1.000 0.999 1.012
0.1-0.2 1.004 0.983 1.026 1.004 0.972 1.020
0.2-0.3 1.005 0.970 0.986 1.005 0.944 0.981

MSM

1 0.0-0.1 0.991 1.010 1.008 0.994 1.019 1.020
0.1-0.2 0.994 1.023 1.017 0.996 1.033 1.042
0.2-0.3 0.995 1.029 1.037 0.998 1.033 1.043

2 0.0-0.1 0.996 1.011 1.009 0.999 1.012 1.028
0.1-0.2 0.998 1.015 1.019 1.000 1.010 1.034
0.2-0.3 0.999 1.015 1.022 1.001 1.007 1.024

3 0.0-0.1 0.999 1.004 1.004 1.000 1.002 1.015
0.1-0.2 1.000 1.002 1.013 1.002 0.991 1.012
0.2-0.3 1.000 1.006 1.007 1.003 0.974 0.983

Note: The table reports the ratio of the MSFE of the optimal weights
to that of the Markov switching weights. DGP MSI: yt “ β1s1t `
β2s2t ` φ1yt´1 ` φ2yt´2 ` σεt where εt „ Np0, 1q. DGP MSM: yt “
β1s1t ` β2s2t ` φ1pyt´1 ´ βst´1

q ` φ2pyt´2 ´ βst´2
q ` σεt, σ

2 “ 0.25,
φ1 “ 0.4, φ2 “ ´0.3. Column labels as in Table 3.
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