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Online appendix

A Distribution of the test statistic W (7;) in Section 2
In order to show that W () ~ x(1,() as stated in (5), it is sufficient to show that
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Normality follows from the assumptions for model (1), and the mean from the fact that
E[3;] = 3; for i = 1,2. For the variance, note that Vi5li=nVit+ (1 -7V, Wecan

rewrite the denominator of the test statistic using the Woodbury matrix identity
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The variance of the numerator of (Al) satisfies
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Furthermore,
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which together with (A2) shows that variance of (Al) is equal to 1.

B Convergence of partial-sample and full-sample estimators
in (11) and (12) of Section 3

Partial-sample estimators The results in Andrews (1993) show that
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Define the projection matrix Pg = X(X/X)_lX/, its orthogonal complement as M ¢ =
I-P3, V=(X'X)"H=2Z'M3Z, L= (X'X)"'X'Z(ZM3Z)',and H=LHL'.
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The inverse in (A3) yields the asymptotic variance covariance matrix of (61(7)’ , Ba(T), 5/>
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from which (11) follows.

Full-sample estimator The full-sample estimator weakly converges as
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Using the notation defined above, the inverse in (A4) is
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which leads to (12).

C A break of known timing

Forecasts are obtained using (9) in the paper

Jr+n = fron(Ba, 8;Ir)

where the information set Zr contains the regressors required for the forecast.
For a known break date, the results of the previous section imply the following asymptotic

distribution of the parameters
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For the full sample estimator we have
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and

Define f 3, = %gz,d;h) and f5 = %W. Using a first order Taylor expansion,

(A5) and (A6), we have that
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and we use that, asymptotically, T (COV(,BF, 8) — COV(BQ, 3)) % 0. Using previous results

on the covariance matrix of the estimators, and the notation in Section B of this appendix,
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For the expected MSFEs using 3, and B, we have
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Hence, the full sample based forecast improves over the post-break sample based forecast if
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This reiterates that the null hypothesis of equal mean squared forecast error translates into
a hypothesis on the standardized break magnitude, (.

Similar to Section 2, a test for Hy : { = 1 can be derived by by noting that, asymptoti-
cally, TVar(Bl — BQ) Py 1V and, therefore,

T (1—7p)

(FoB -],
W) =T —7)7 . ~x"(1,¢) (A9)

w

where @ is a consistent estimator of f%QV fs,- The test statistic, W (7,), can be compared
against the critical values of the x2(1, 1) distribution to test for equal forecast performance.

The above can be immediately applied to the simple structural break model (1) in the
paper where fTH(BQ; Try1) = 37/T+1B27 and fgz, = ®r41. The full sample forecast is more

accurate if )
[w/T+1(51 - /32)]

/
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which asymptotically coincides with (4) in the paper.



D Proof of Lemma 1 in the paper

Define A(7) = Ay — Ay where
Ay = TIEI;OTE [(fIQQ(BQ(%) — Bg) + f/52(3 - 5))1 /f5,V£s,
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To prove the lemma, we need that
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Note that X2 = {(r), so that 7 is found by maximizing X2. We know that for given 7,
asymptotically these are jointly normally distributed. It is easy to show that

E[X(r)Y] =0

for any given 7. Together with the joint normality of X (7) and Y, this implies independence
between X (7) and Y for given 7, i.e. X(7) LY.

However, we need to prove

Denote

9(X(7)) = jlellpIX(T), h(X(r)) = inf X(7)

Since X (1) is a stochastic process with continuous sample paths, g(-) and h(-) are measurable



functions of X (7), which implies
g(X(r)) LY,  h(X(7) LY
In terms of g(-) and h(-) we can write

X(7) = f(g(),h(-)) = 9() + [h(-) = g()[g () + A(-) < 0]

with I[-] the indicator function. Now ¢(X (7)) and h(X (7)) are measurable functions of
X(7) and f(g(-),h(-)) is a measurable function of g(-),h(-). Since compositions of me-
asurable functions are measurable, X (7) is a measurable function of X (7) as well. Since
f(g(X(7)),h(X (7)) and Y are independent if X (7) and Y are independent and f(g(X (7)), h(X(7)))
is a measurable function of X (7), X (7) is independent of Y. Then E[X (7)Y ] = 0. [ |

E Verifying Assumption 4 in the paper

In the structural break model, Assumption 4 is satisfied when |Ou(r)/0m| < 07, [1(1 —
)] 7'/2. The break size ('/? depicted in Figure 1 in the paper satisfies (/2 = 0,,v/7(1 — 1) >

1. Therefore, a sufficient condition for the slowly varying assumption is
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Observe that, in Figure A, the dashed line, which depicts the derivative of the critical
values for a = 0.05 as a function of the break date 7, and is obtained via simulation, is

clearly below the solid line, which depicts the upper bound [73(1 — 7)] 7.

Figure A: Dependence of the critical values on the break date
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Note: The dashed line depicts the derivative of the critical values for & = 0.05 as a

function of the break date 7,. The solid line depicting the upper bound [,(1 — 7)] "



F Uniqueness of the break magnitude that yields equal fore-
cast accuracy

In order to ensure the uniqueness of the break magnitude that leads to equal forecast accu-

racy, we evaluate A in (20) in the paper and A, in (31) in the paper numerically using the

simulation set-up described in Section 5. The results in Figure B show that the value of |6, |

that leads to equal forecast accuracy is unique.

Figure B: Difference in asymptotic MSFEs, A and A,
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Note: The left panel shows the difference in the asymptotic MSFE between the post-break forecast
and the full-sample forecast as a function of the standardized break magnitude ¢'/? in (20) for ™ =
{0.15,0.50,0.75,0.85}. The right panel shows the difference in MSFE between the combined forecast and the

full-sample forecast in (31) in the paper.

G Derivation of equation (27) in the paper

From a Taylor series expansion it follows that
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We analyze the first and third term of the second equality separately.

Using a bias-variance decomposition, the expectation in the first term is calculated as
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since limy_,o TCov(3,, B) = 0.



The term linear in w is given by
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Using these two expressions yields (27) in the paper.

H Application results with rolling windows of 240 observati-

ons

This section reports the result of our application but when the estimation window contains
240 instead of 120 observations. Table A gives the fractions of the time series and estimation
windows where a significant structural break is found. Compared to Table 5 marginally fewer

breaks are found but the pattern across the different tests is the same.

Table A: Fractions of estimation samples with a
significant structural break

supW %4 S we S¢

AR(1) 0.183 0.087 0.096 0.103 0.112
AR(6) 0.086 0.028 0.036 0.035 0.045

Note: This table is the analogue of Table 5 with estimates
based on a rolling window size of T' = 240.

Table B shows the MSFE of the post-break forecasts of our tests relative to the test of
Andrews. It can be seen that the forecasts from our test are generally more precise even if

compared to the results in Table 5 the improvements are slightly smaller.

I Combination of tests with optimal window selection

Table C reports the results of forecasting with the optimal window of Inoue et al. (2017)
either based on the test of Andrews (which in the case of one break is equivalent to the test
of Bai and Perron (1998)) and on our test. The approach of Inoue et al. (2017) has two
steps: first, using one of the two tests it is established whether an estimation sample has a
structural break. Second, once a structural break has been found, forecasts are made using
the optimal estimation window.

The results in Table C are the MSFE of each forecast method relative that of the post
break sample based forecast using Andrews’ test. It can be seen that uniformly using our
Wald-type test leads to further improvements of the optimal windows suggested by Inoue
et al. (2017).



Table B: Relative MSFE compared to Andrews’ sup W test

Post-break Combination
w S W S sup W
AR(1) All series 0.986 0.987 0.981 0.980 0.990

0] 0.997 0.994 0.990 0.987 0.991
LM 0.989 0.994 0.984 0.982 0.988
CcO 0.974 0.971 0.968 0.968 0.991
OrdInv 1.003 0.999 0.995 0.997 0.992
MC 1.033 1.035 1.019 1.037 0.997
IRER 0.954 0.954 0.954 0.951 0.988
P 0.879 0.976 0.897 1.059 0.986
S 0.960 0.989 0.972 0.992 0.995
AR(6) All series 0.972 0.981 0.969 0.987 0.991
Ol 0.992 1.013 0.982 1.000 0.993
LM 0.980 0.995 0.976 1.006 0.993
CcO 0.991 0.986 0.986 0.985 0.994
OrdInv 0.982 1.014 0.988 1.019 0.993
MC 0.981 1.0562 1.005 1.084 0.993
IRER 0.930 0.922 0.924 0.938 0.985
P 0.942 0.983 0.959 0.972 0.989
S 1.008 1.019 1.005 1.008 0.993
Note: This table is the analogue of Table 6 with a rolling window size
of T' = 240.
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Table C: MSFE of optimal estimation window of Inoue et al. (2017)

OptR1-A  OptR2-A OptR3-A OptR1-W OptR1-W  OptR1-W

AR(1) All series 0.916 0.916 0.916 0.898 0.898 0.898
Ol 0.929 0.929 0.929 0.924 0.924 0.924
LM 0.896 0.895 0.895 0.883 0.882 0.882
CO 0.956 0.956 0.956 0.951 0.951 0.951
OrdInv 0.918 0.918 0.918 0.901 0.901 0.901
MC 0.998 0.997 0.997 0.972 0.971 0.971
IRER 0.887 0.887 0.887 0.833 0.833 0.833
P 0.939 0.939 0.939 0.939 0.939 0.939
S 0.944 0.946 0.946 0.902 0.902 0.902
AR(6) All series 0.918 0.918 0.918 0.890 0.890 0.890
Ol 0.927 0.927 0.927 0.899 0.899 0.899
LM 0.894 0.893 0.893 0.879 0.879 0.879
CO 0.955 0.955 0.955 0.937 0.937 0.937
OrdInv 0.909 0.909 0.909 0.883 0.883 0.883
MC 0.977 0.977 0.977 0.946 0.946 0.946
IRER 0.890 0.891 0.891 0.832 0.832 0.832
P 0.941 0.941 0.941 0.899 0.899 0.899
S 0.963 0.963 0.963 0.955 0.955 0.955

Note: OptR1-A, OptR2-A, and OptR3-A denote the forecasts from optimal windows of Inoue et al. (2017)
based on Andrews’ test and OptR1-W, OptR2-W, and OptR3-W the equivalent forecasts based on our Wald-
type test. All are MSFEs as a ratio of the post-break sample based forecasts using the break date from Andrews’
test.
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